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A STOCHASTIC PROCESS

All variables under consideration are, in principle, vectors:

• State random variable: X = Xt.

• Parameter (non-random) variable: t, usually denoting time.

Classification:

State space

Discrete Discrete parameter chain Continuous parameter chain

Continuous
Random sequence

(topic of this class)
Stochastic process

Discrete Continuous

Parameter Set
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STOCHASTIC PROCESSES

• Defined by the PROBABILITY LAW: Full joint distribution function FXt0,...: ∀t≥t0
/

full joint density function fXt0,...: ∀t≥t0
/ full joint characteristic function

ϕXt0,...: ∀t≥t0

• Difficult to express in general: for Markov and Gaussian process the first-order:
fXt: t≥t0

and the second-order: fXt,τ: t,τ≥t0
marginals are enough to determine the

probability law.

Some important statistics functions:

• The mean value function: mX(t) = E[Xt] (t)

• The (auto) correlation function: γX(t, τ) = E[Xt Xτ ] (t)

• The (auto) covariance function: cX(t, τ) = E[(Xt − mX(t)) (Xτ − mX(τ))] (t)

Stationarity:

• Weak: mX(t) = const. cX(t, t + τ) = const.; ∀τ
• Strong: fXt0,...,tn

= fXt0+τ,...,tn+τ
; ∀τ (n - order)
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MEAN-SQUARE CALCULUS

Limit in mean-square:
l.i.m. xn = x⇔ lim

n→∞
E[|x− xn|2] = 0

Re-defining all the usual operations of calculus in the mean-square sense, we get very
useful properties:

• mẊ(t) = ṁX(t) E[
∫ b

a Xtdt] =
∫ b

a mX(t)dt

• γẊẊ(t, τ) =
∂γ(t,τ)
∂t∂τT E[

∫ b
a Xtdt

∫ d
c Xτdτ ] =

∫ b
a

∫ d
c γX,X(t, τ) dt dτ

• cẊẊ(t, τ) =
∂c(t,τ)
∂t∂τT Cov(

∫ b
a Xtdt,

∫ d
c Xτdτ) =

∫ b
a

∫ d
c cX,X(t, τ) dt dτ

and the fundamental theorem of (mean-square) calculus:

Xt − Xa =

∫ t

a
Xτ dτ
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THE BROWNIAN MOTION AND WHITE NOISE PROCESSES

The Brownian Motion (Wiener - Levy) process - βt:

• Xt ∼ N(0,C(t)); ∀t

• {Xt} has stationary and independent increments:

Xt − Xτ
D
= Xt+h − Xτ+h; ∀h, ∀t > τ

• Xt − Xτ ∼ N(0, σ2(t− τ)); ∀τ, ∀t > τ

Is a Gaussian and a Markov stochastic process.

The White noise process:

• {Xt} is mutually independent with all other states: Xt ⊥⊥ Xτ ; ∀t, τ

• The power spectral density of the correlation function is constant, hence the name.

• For a white Gaussian process: CX,X(t, t + τ) = Q(t) δ(t− τ)

The latter, together with the rules of mean-square calculus, gives:

wt = dβt
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THE SDE

In general, for a random, not necessarily linear function f

Ẋt = f (xt,wt, t) ⇔ Xt − Xt0 =

∫ t

t0

f (xτ ,wτ , τ) dτ, (1)

where wt is itself a random function - the ”forcing”, ”input” term.

We will restrict ourselves to the separable form - the Langevin equation:

Ẋt = f (xt, t) + G(wt, t) wt ⇔ f (xt, t) + G(wt, t) dβt, (2)

where wt is a Gaussian white noise. E[dβt dβT
t ] = Q(t).

What is dβt? We can side-step this question with the fundamental theorem:

Xt − Xt0 =

∫ t

t0

f (xτ , τ) dτ︸ ︷︷ ︸
Mean-square Riemann integral

+

∫ t

t0

G(xτ , τ) dβτ︸ ︷︷ ︸
Ito integral

(3)
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THE ITO INTEGRAL: INTUITION AND DEFINITION
The increments are Markov by the property of the Brownian motion:

(Xt+δt − Xt)|Xt ∝ (βt+δt − βt)

For illustration: say Xt ≡ eβt :

δXt ≈ eβt+δβt − eβt ≈ Xt(δβt +
1
2
δβ2

t + . . .)

E[δXt − Xtδβt] = O(δt) (if using only 1st order!)

=⇒ dXt = Xtdβt +
1
2

Xtdβ2
t

=⇒ Xt − 1 =

∫ t

0
Xt dβτ +

1
2

∫ t

0
Xt dβ2

τ

FIRST- and SECOND order Ito stochastic integrals for the Brownian motion:
For a random function: gt(ω) ⊥⊥ (βt − βτ ),

∫
T E[|gt(ω)|2]dt <∞:

∫ t

0
gt(ω) dβτ = l.i.m.ρ→0

∑
i

gt(ω)(βti+1 − βti ) (4)

∫ t

0
gt(ω) dβ2

τ = l.i.m.ρ→0
∑

i

gt(ω)(βti+1 − βti )
2 = σ2

∫ t

0
gt(ω) dt, (5)

where ρ is the maximum sequential distance on the partition.
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THE ITO STOCHASTIC DIFFERENTIAL

For an arbitrary (nice enough) function of Xt ϕ, its stochastic differential is:

dϕ =
∂ϕ

∂x
dt +

∂ϕ

∂xT dXt +
1
2

tr

Ç
G(t)Q(t)G(t)T ∂2ϕ

∂x∂xT

å
dt (6)

A solution for the Ito integral of a given function ψ = ∂ϕ
∂x can thus be obtained from

the fundamental theorem:∫ b

a
ψ(βt)dβt = ϕ(βb)− ϕ(βa)−

σ2

2

∫ b

a

∂2ϕ

∂x∂xT dt
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KOLMOGOROV’S EQUATION

Recap: for the Brownian motion, the marginal and the transition probability are the
probability law.

For the (Langevin) Ito SDE:

dXt = f (xt, t) dt + g(xt, t) dβt

with non-random functions f , g, A. Kolmogorov has derived a PDE for the evolution of
the transition probability:

∂p(Xt|Xτ )

∂t
=
∂(p(Xt|Xτ ) f (x, t))

∂x
+

1
2
∂2(p(Xt|Xτ ) g2(x, t))

∂x2
, ∀t > τ (7)

In the context of Physics this diffusion equation is called the Fokker-Planck equation. It
can be formerly encapsulated by a diffusion operator L(p).

Initial condition: limt→τ pXt|Xτ (xt|xτ ) = δ(xt − xτ ).
Boundary conditions: pXt|Xτ (±∞ | xτ ) = 0.
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THE GENERAL FILTERING PROBLEM

We can now bring observations into the picture as another Langevin equation:

yt = h(xt, t) + vt ⇔ dzt = h(xt, t) + dηt, (8)

where vt is another (independent) white-noise process, and dηt a Brownian motion:
E[dηtdηT

t ] = R(t).

Given a suitable prior pX0 , the conditional density pXt|Y0:t is the complete solution of the
filtering problem.

Goal:

• Estimate the conditional (posterior) mean: x̂t = E[Xt|Y0:t]

• This is the optimal (minimum variance) estimate for E[L(xt − x̂t)|Y0:t] for a class of
loss functions L(x− x̂)
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THE EFFECT OF DISCRETE OBSERVATIONS - BETWEEN OBSERVATIONS
Between observations, the density evolution must obey Kolmogorov’s equation
L(pXt|Y0:t ).

We can use the properties of the stochastic differential of a (nice enough) function ϕ (6)
to adapt it to the conditional mean x̂t and the conditional covariance:

P̂τt = Cov(Xt, Xt|Y0:τ ), (τ = t for filtering problems)

In case the filtering problem is linear with the Brownian process, these two uniquely
determine the state.

Define the conditional expectation operator for a function ϕ:

ϕ̂τ (Xt) = Eτ [ϕ(Xt)|Y0:τ ] =

∫
ϕ(xt) pXt|Y0:τ

(xt) dxt (9)

The Kolmogorov equation for these two becomes:

˙̂xt
t = ÷f (xt, t)

t

˙̂Pt
t =

ï⁄�Xtf (xt, t)T
t
− X̂t

t ◊�f (xt, t)T
tò

+

ïŸ�f (xt, t)XT
t

t
−÷f (xt, t)

t
(X̂t

t
)T
ò

+ ¤�G(t)Q(t)G(t)T
t
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P̂τt = Cov(Xt, Xt|Y0:τ ), (τ = t for filtering problems)

In case the filtering problem is linear with the Brownian process, these two uniquely
determine the state.

Define the conditional expectation operator for a function ϕ:

ϕ̂τ (Xt) = Eτ [ϕ(Xt)|Y0:τ ] =

∫
ϕ(xt) pXt|Y0:τ

(xt) dxt (9)

The Kolmogorov equation for these two becomes:

˙̂xt
t = ÷f (xt, t)

t

˙̂Pt
t =

ï⁄�Xtf (xt, t)T
t
− X̂t

t ◊�f (xt, t)T
tò

+

ïŸ�f (xt, t)XT
t

t
−÷f (xt, t)

t
(X̂t

t
)T
ò

+ ¤�G(t)Q(t)G(t)T
t
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THE EFFECT OF DISCRETE OBSERVATIONS - AT THE OBSERVATIONS

We wish to determine the relation between pXt|Y−0:t
= pXt|Y0:tk−1

and pXt|Y0:t , i.e. what

happens at the observation at the time tk.

The latter must satisfy Bayes’ rule:

pXtk |Y0:tk
=

pYtk |Xtk ,Y0:tk−1
pXtk |Y0:tk−1

pYtk |Y0:tk−1

For a white noise process, we recover the familiar general filtering update rule:

pXtk |Y0:tk
=

pYtk |Xtk
pXtk |Y

−
0:tk∫

pYtk |ξtk
p
ξtk |Y

−
0:tk

dξ
(10)

For continuous observations y(t), Y−0:t signifies the left limit.
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CONTINUOUS OBSERVATIONS: THE KUSHNER EQUATION

Problem: there is no ”time between observations”, so Kolmogorov’s equation needs to
be modified to account for the observations.

The differential equation for pXt|Y0:t with continuous observations obeys the Kushner
equation:

dp = L(p) + (ht − ĥt
t)

T R−1(t) (dzt − ĥt
t dt), (11)

where ht = h(Xt, t) is the ”forcing” term from the Langevin equation for the
observations, and dz are the continuous observations.
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THE GENERAL EVOLUTION OF MOMENTS

As with the Kolmogorov equation, the Kushner equation can also be adapted for the
conditional expectation of (nice enough) functions of Xt. Thus we obtain for the first
two moments:

dx̂t = f̂ t
t dt +

ï
(‘Xtht

t
)T − X̂t

t
ĥt

t

ò
R−1(t)

î
dzt − ĥt

t dt
ó

d(P̂t)ij =

ïÿ�(Xt)i(ft)j
t
−’(Xt)i

t‘(ft)j
t
ò

+

ïÿ�(Xt)j(ft)i
t
−’(Xt)j

t‘(ft)i
t
ò

+ ¤�(G(t)Q(t)G(t)T)ij
t

−
ïÿ�(Xt)i(ht)

t
−’(Xt)i

t
(̂h)j

t
ò

R−1(t)
ïÿ�(Xt)j(ht)

t
−’(Xt)j

t
(̂h)j

t
ò

+

ï ¤�(Xt)i(Xt)j(ht)
t
−Ÿ�(Xt)i(Xt)j

t
(̂h)j

t
−’(Xt)i

tÿ�(Xt)t
j(h)j

t
−’(Xt)j

tÿ�(Xt)t
i(h)j

t
+ 2’(Xt)i

t’(Xt)j
t
(̂h)j

t
ò

R−1(t)
î
dzt − ĥt

t dt
ó
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LINEAR GAUSSIAN FILTERING PROBLEM

Given the complexity of the above, we now limit ourselves to linear, Gaussian white
noise filtering problems:

dXt = F(t) Xt dt + G(t) dβt

dYt = M(t) Xt dt + dηt

• The state and time dynamics are separated.

• Thus, the conditional covariance P is no longer a function of the state: P̂t
t = Pt

t.
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RECAP: THE DISCRETE-DISCRETE KALMAN FILTER

Xt+1 = F(t) Xt + G(t) wt+1

yt+1 = M(t) Xt + vt

Since the parameter space t is discrete, Kolmogorov’s equation (7) simply decomposes
into difference equations. For the moments, this gives:

x̂t
t+1 = F(t) x̂t

t

Pt
t+1 = F(t)Pt

tF(t)T + G(t)Q(t + 1)G(t)T,

which are the familiar one-step ahead prediction relations.
At the observations, we proceed using the conjugacy of the Gaussians to simplify (10).
If we define the Kalman Gain as:

K(t) = Pt−
t MT(t)

î
MT(t)Pt−

t MT(t) + R(t)
ó−1

We recover the familiar filtering update relations:

x̂t
t = x̂t−1

t + K(t)
î
yt −M(t)x̂t−1

t

ó
Pt

t = Pt−1
t − K(t)M(t)Pt−1

t
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THE CONTINUOUS-DISCRETE KALMAN FILTER

Ẋt = F(t) Xt dt + G(t) dβt

ytk = M(tk) Xtk + vk

Note: we have the marginal pXt|Y0:t in closed form; one could simply evolve the state
using Kolmogorov’s equation.

The Kolmogorov equation for the evolution of moments between observations
simplifies to:

˙̂xt
t = F(t) x̂t

t

Ṗt
t = F(t)Pt

t + Pt
tF(t)T + G(t)Q(t)G(t)T

Since the observations are still discrete, we simply replace the previous values of the
states with the left limits in the preceding version:

x̂
t+k
tk

= x̂
t−k
tk

+ K(tk)

ï
ytk −M(tk)x̂

t−k
tk

ò
P

t+k
t = P

t−k
tk
− K(tk)M(tk)P

t−k
t

This filter can be reformulated as a discrete filter by integrating over all intervals
[tk, tk+1] and using the state transition matrix Φ(tk+1, tk).
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THE CONTINUOUS-CONTINUOUS KALMAN FILTER: THE
KALMAN-BUCY FILTER

Ẋt = F(t) Xt dt + G(t) dβt

żt = M(t) Xt dt + dηt

Here, we have to adapt the Kushner equation for the moments. Fortunately, the
separability f (Xt, t) = F(t) Xt . . . significantly simplifies the terms of the type:

(‘Xtf T
t
− X̂t

t“f T
t
) = (’XtXT

t

t
− X̂t

t”XT
t

t
) F(t)T etc.

By defining the Kalman gain in this instance as:

K(t) = Pt
tM(t)TR(t)−1,

we get:

dx̂t
t = F(t) x̂t

t dt +K(t)
[
dzt −M(t) x̂t

t dt
]

Ṗt
t = F(t) Pt

t + Pt
t F(t)T + G(t) Q(t) G(t)T −K(t) M(t) Pt

t,

where dzt is the (continuously) observed value.
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żt = M(t) Xt dt + dηt

Here, we have to adapt the Kushner equation for the moments. Fortunately, the
separability f (Xt, t) = F(t) Xt . . . significantly simplifies the terms of the type:

(‘Xtf T
t
− X̂t

t“f T
t
) = (’XtXT

t

t
− X̂t

t”XT
t

t
) F(t)T etc.

By defining the Kalman gain in this instance as:

K(t) = Pt
tM(t)TR(t)−1,

we get:

dx̂t
t = F(t) x̂t

t dt +K(t)
[
dzt −M(t) x̂t

t dt
]

Ṗt
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THE KALMAN-BUCY FILTER - SOME PROPERTIES

• There is no more separation between the evolution between- and the jumps at -
the observations: we get one equation.

• The Kalman gain leverages the influence of the residual on the state.

• The equation for the evolution of the conditional variance is known as the Riccati
equation.
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CONCLUSION

• Dynamic programming / Reinforcement learning

• Statistical mechanics

• Dynamical systems
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