Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
•0	0000000	00000	00000	0

The Continuous-time Kalman Filter

UC Berkeley STAT 248, Spring 2022: Final presentation

Andrej Leban

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
0●	0000000	00000	00000	0

OVERVIEW

Introduction

STOCHASTIC PROCESSES Stochastic calculus

GENERAL FILTERING

CONTINUOUS-TIME KALMAN FILTER

Conclusion

・ロト・(型ト・(ヨト・(ロト))
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・</li

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	• 000 0000	00000	00000	0

A STOCHASTIC PROCESS

All variables under consideration are, in principle, vectors:

- State random variable: $X = X_t$.
- **Parameter (non-random) variable**: *t*, usually denoting time.

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	• 000 0000	00000	00000	0

A STOCHASTIC PROCESS

All variables under consideration are, in principle, vectors:

- State random variable: $X = X_t$.
- **Parameter (non-random) variable**: *t*, usually denoting time.

Classification:

State chase	Discrete	Discrete parameter chain	Continuous parameter chain
State space	Continuous	Random sequence (topic of this class)	Stochastic process
		Discrete	Continuous
		Parame	ter Set

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

STOCHASTIC PROCESSES

- Defined by the PROBABILITY LAW: Full joint distribution function $F_{X_{t_0,...: \forall t \ge t_0}} /$ full joint density function $f_{X_{t_0,...: \forall t \ge t_0}} /$ full joint characteristic function $\varphi_{X_{t_0,...: \forall t \ge t_0}}$
- Difficult to express in general: for *Markov* and *Gaussian* process the first-order: $f_{X_{t, t \ge t_0}}$ and the second-order: $f_{X_{t, \tau : t, \tau \ge t_0}}$ marginals are enough to determine the probability law.

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

STOCHASTIC PROCESSES

- Defined by the PROBABILITY LAW: Full joint distribution function $F_{X_{t_0,...: \forall t \ge t_0}} /$ full joint density function $f_{X_{t_0,...: \forall t \ge t_0}} /$ full joint characteristic function $\varphi_{X_{t_0,...: \forall t \ge t_0}}$
- Difficult to express in general: for *Markov* and *Gaussian* process the first-order: $f_{X_{t, t}: t \ge t_0}$ and the second-order: $f_{X_{t, \tau}: t, \tau \ge t_0}$ marginals are enough to determine the probability law.

Some important statistics functions:

- The mean value function: $m_X(t) = \mathbb{E}[X_t](t)$
- The (auto) correlation function: $\gamma_X(t, \tau) = \mathbb{E}[X_t X_\tau](t)$
- The (auto) covariance function: $c_X(t, \tau) = \mathbb{E}[(X_t m_X(t)) (X_\tau m_X(\tau))](t)$

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

STOCHASTIC PROCESSES

- Defined by the PROBABILITY LAW: Full joint distribution function $F_{X_{t_0,...: \forall t \ge t_0}} /$ full joint density function $f_{X_{t_0,...: \forall t \ge t_0}} /$ full joint characteristic function $\varphi_{X_{t_0,...: \forall t \ge t_0}}$
- Difficult to express in general: for *Markov* and *Gaussian* process the first-order: $f_{X_{t, t \ge t_0}}$ and the second-order: $f_{X_{t, \tau: t, \tau \ge t_0}}$ marginals are enough to determine the probability law.

Some important statistics functions:

- The mean value function: $m_X(t) = \mathbb{E}[X_t](t)$
- The (auto) correlation function: $\gamma_X(t, \tau) = \mathbb{E}[X_t X_\tau](t)$
- The (auto) covariance function: $c_X(t, \tau) = \mathbb{E}[(X_t m_X(t)) (X_\tau m_X(\tau))](t)$

Stationarity:

- Weak: $m_X(t) = const.$ $c_X(t, t + \tau) = const.; \forall \tau$
- Strong: $f_{X_{t_0},...,t_n} = f_{X_{t_0}+\tau,...,t_n+\tau}$; $\forall \tau$ (*n* order)

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

$Mean-square \ calculus$

Limit in mean-square:

l.i.m.
$$x_n = x \Leftrightarrow \lim_{n \to \infty} \mathbb{E}[|x - x_n|^2] = 0$$

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

$Mean-square \ calculus$

Limit in mean-square:

l.i.m.
$$x_n = x \Leftrightarrow \lim_{n \to \infty} \mathbb{E}[|x - x_n|^2] = 0$$

Re-defining all the usual operations of calculus in the mean-square sense, we get very useful properties:

•
$$m_{\dot{X}}(t) = \dot{m}_{X}(t)$$
 $\mathbb{E}[\int_{a}^{b} X_{t}dt] = \int_{a}^{b} m_{X}(t)dt$
• $\gamma_{\dot{X}\dot{X}}(t,\tau) = \frac{\partial\gamma(t,\tau)}{\partial t\partial\tau^{T}}$ $\mathbb{E}[\int_{a}^{b} X_{t}dt \int_{c}^{d} X_{\tau}d\tau] = \int_{a}^{b} \int_{c}^{d} \gamma_{X,X}(t,\tau) dt d\tau$
• $c_{\dot{X}\dot{X}}(t,\tau) = \frac{\partial c(t,\tau)}{\partial t\partial\tau^{T}}$ $\operatorname{Cov}(\int_{a}^{b} X_{t}dt, \int_{c}^{d} X_{\tau}d\tau) = \int_{a}^{b} \int_{c}^{d} c_{X,X}(t,\tau) dt d\tau$

and the fundamental theorem of (mean-square) calculus:

$$X_t - X_a = \int_a^t X_\tau \ d\tau$$

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

The Brownian motion and White Noise processes

The Brownian Motion (Wiener - Levy) process - β_t :

- $X_t \sim N(0, C(t)); \forall t$
- $\{X_t\}$ has stationary and independent **increments**:

$$X_t - X_\tau \stackrel{D}{=} X_{t+h} - X_{\tau+h}; \qquad \forall h, \forall t > \tau$$

• $X_t - X_\tau \sim N(0, \sigma^2(t-\tau)); \quad \forall \tau, \forall t > \tau$

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	00000000	00000	00000	0

THE BROWNIAN MOTION AND WHITE NOISE PROCESSES

The Brownian Motion (Wiener - Levy) process - β_t :

- $X_t \sim N(0, C(t)); \forall t$
- $\{X_t\}$ has stationary and independent **increments**:

$$X_t - X_\tau \stackrel{D}{=} X_{t+h} - X_{\tau+h}; \qquad \forall h, \forall t > \tau$$

• $X_t - X_\tau \sim N(0, \sigma^2(t-\tau)); \quad \forall \tau, \forall t > \tau$

Is a Gaussian and a Markov stochastic process.

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	00000000	00000	00000	0

THE BROWNIAN MOTION AND WHITE NOISE PROCESSES

The Brownian Motion (Wiener - Levy) process - β_t :

- $X_t \sim N(0, C(t)); \forall t$
- $\{X_t\}$ has stationary and independent **increments**:

$$X_t - X_\tau \stackrel{D}{=} X_{t+h} - X_{\tau+h}; \qquad \forall h, \forall t > \tau$$

• $X_t - X_\tau \sim N(0, \sigma^2(t-\tau)); \quad \forall \tau, \forall t > \tau$

Is a Gaussian and a Markov stochastic process.

The White noise process:

- { X_t } is mutually independent with all other states: $X_t \perp X_{\tau}$; $\forall t, \tau$
- The power spectral density of the correlation function is constant, hence the name.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• For a white *Gaussian* process: $C_{X,X}(t, t + \tau) = Q(t) \delta(t - \tau)$

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

THE BROWNIAN MOTION AND WHITE NOISE PROCESSES

The Brownian Motion (Wiener - Levy) process - β_t :

- $X_t \sim N(0, C(t)); \forall t$
- $\{X_t\}$ has stationary and independent **increments**:

$$X_t - X_\tau \stackrel{D}{=} X_{t+h} - X_{\tau+h}; \qquad \forall h, \forall t > \tau$$

• $X_t - X_\tau \sim N(0, \sigma^2(t-\tau)); \quad \forall \tau, \forall t > \tau$

Is a Gaussian and a Markov stochastic process.

The White noise process:

- { X_t } is mutually independent with all other states: $X_t \perp X_{\tau}$; $\forall t, \tau$
- The power spectral density of the correlation function is constant, hence the name.
- For a white *Gaussian* process: $C_{X,X}(t, t + \tau) = Q(t) \delta(t \tau)$

The latter, together with the rules of mean-square calculus, gives:

$$w_t = d\beta_t$$

Introduction	STOCHASTIC PROCESSES	General filtering	Continuous-time Kalman filter	Conclusion
00		00000	00000	O

The SDE

In general, for a *random*, not necessarily linear function *f*

$$\dot{X}_t = f(x_t, w_t, t) \iff X_t - X_{t_0} = \int_{t_0}^t f(x_\tau, w_\tau, \tau) \, d\tau, \tag{1}$$

◆□▶ < @ ▶ < E ▶ < E ▶ < E ▶ < 0 < 0</p>

where w_t is itself a random function - the "forcing", "input" term.

Introduction 00	STOCHASTIC PROCESSES	General filtering 00000	Continuous-time Kalman filter	Conclusion O

THE SDE

In general, for a *random*, not necessarily linear function f

$$\dot{X}_t = f(x_t, w_t, t) \iff X_t - X_{t_0} = \int_{t_0}^t f(x_\tau, w_\tau, \tau) \, d\tau, \tag{1}$$

where w_t is itself a random function - the "forcing", "input" term.

We will restrict ourselves to the separable form - the Langevin equation:

$$\dot{X}_t = f(x_t, t) + G(w_t, t) w_t \Leftrightarrow f(x_t, t) + G(w_t, t) d\beta_t,$$
(2)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where w_t is a Gaussian white noise. $\mathbb{E}[d\beta_t \ d\beta_t^T] = Q(t)$.

Introduction 00	STOCHASTIC PROCESSES	General filtering 00000	Continuous-time Kalman filter	Conclusion O

THE SDE

In general, for a *random*, not necessarily linear function f

$$\dot{X}_t = f(x_t, w_t, t) \iff X_t - X_{t_0} = \int_{t_0}^t f(x_\tau, w_\tau, \tau) \, d\tau, \tag{1}$$

where w_t is itself a random function - the "forcing", "input" term.

We will restrict ourselves to the separable form - the Langevin equation:

$$\dot{X}_t = f(x_t, t) + G(w_t, t) w_t \Leftrightarrow f(x_t, t) + G(w_t, t) d\beta_t,$$
(2)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where w_t is a Gaussian white noise. $\mathbb{E}[d\beta_t d\beta_t^T] = Q(t)$.

Introduction 00	STOCHASTIC PROCESSES	General filtering 00000	Continuous-time Kalman filter	Conclusion O

THE SDE

In general, for a *random*, not necessarily linear function f

$$\dot{X}_t = f(x_t, w_t, t) \iff X_t - X_{t_0} = \int_{t_0}^t f(x_\tau, w_\tau, \tau) \, d\tau, \tag{1}$$

where w_t is itself a random function - the "forcing", "input" term.

We will restrict ourselves to the separable form - the Langevin equation:

$$\dot{X}_t = f(x_t, t) + G(w_t, t) w_t \Leftrightarrow f(x_t, t) + G(w_t, t) d\beta_t,$$
(2)

where w_t is a Gaussian white noise. $\mathbb{E}[d\beta_t \ d\beta_t^T] = Q(t)$.

What is $d\beta_t$? We can side-step this question with the fundamental theorem:

$$X_t - X_{t_0} = \underbrace{\int_{t_0}^t f(x_{\tau}, \tau) d\tau}_{\text{Mean-square Riemann integral}} + \underbrace{\int_{t_0}^t G(x_{\tau}, \tau) d\beta_{\tau}}_{\text{Ito integral}}$$
(3)

シック・目前・4回×4回×4回×

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	00000000	00000	00000	0

THE ITO INTEGRAL: INTUITION AND DEFINITION The increments are Markov by the property of the Brownian motion:

 $(X_{t+\delta t} - X_t)|X_t \propto (\beta_{t+\delta t} - \beta_t)$

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	00000000	00000	00000	0

THE ITO INTEGRAL: INTUITION AND DEFINITION The increments are Markov by the property of the Brownian motion:

$$(X_{t+\delta t} - X_t)|X_t \propto (\beta_{t+\delta t} - \beta_t)$$

For illustration: say $X_t \equiv e^{\beta_t}$:

$$\delta X_t \approx e^{\beta_t + \delta \beta_t} - e^{\beta_t} \approx X_t (\delta \beta_t + \frac{1}{2} \delta \beta_t^2 + \ldots)$$

$$\mathbb{E}[\delta X_t - X_t \delta \beta_t] = \mathcal{O}(\delta t) \qquad \text{(if using only 1st order!)}$$

$$\implies dX_t = X_t d\beta_t + \frac{1}{2} X_t d\beta_t^2$$

$$\implies X_t - 1 = \int_0^t X_t d\beta_\tau + \frac{1}{2} \int_0^t X_t d\beta_\tau^2$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	00000000	00000	00000	0

THE ITO INTEGRAL: INTUITION AND DEFINITION The increments are Markov by the property of the Brownian motion:

$$(X_{t+\delta t} - X_t)|X_t \propto (\beta_{t+\delta t} - \beta_t)$$

For illustration: say $X_t \equiv e^{\beta_t}$:

$$\delta X_t \approx e^{\beta_t + \delta \beta_t} - e^{\beta_t} \approx X_t (\delta \beta_t + \frac{1}{2} \delta \beta_t^2 + \ldots)$$

$$\mathbb{E}[\delta X_t - X_t \delta \beta_t] = \mathcal{O}(\delta t) \qquad \text{(if using only 1st order!)}$$

$$\implies dX_t = X_t d\beta_t + \frac{1}{2} X_t d\beta_t^2$$

$$\implies X_t - 1 = \int_0^t X_t d\beta_\tau + \frac{1}{2} \int_0^t X_t d\beta_\tau^2$$

FIRST- and SECOND order Ito stochastic integrals for the Brownian motion: For a random function: $g_t(\omega) \perp (\beta_t - \beta_\tau), \ \int_T \mathbb{E}[|g_t(\omega)|^2] dt < \infty$:

$$\int_{0}^{t} g_{t}(\omega) d\beta_{\tau} = \text{l.i.m.}_{\rho \to 0} \sum_{i} g_{t}(\omega) (\beta_{t_{i+1}} - \beta_{t_{i}})$$

$$\int_{0}^{t} g_{t}(\omega) d\beta_{\tau}^{2} = \text{l.i.m.}_{\rho \to 0} \sum_{i} g_{t}(\omega) (\beta_{t_{i+1}} - \beta_{t_{i}})^{2} = \sigma^{2} \int_{0}^{t} g_{t}(\omega) dt,$$
(5)

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	00000000	00000	00000	0

THE ITO STOCHASTIC DIFFERENTIAL

For an arbitrary (nice enough) function of $X_t \varphi$, its *stochastic differential* is:

$$d\varphi = \frac{\partial\varphi}{\partial x}dt + \frac{\partial\varphi}{\partial x^{T}}d_{Xt} + \frac{1}{2}tr\left(G(t)Q(t)G(t)^{T}\frac{\partial^{2}\varphi}{\partial x\partial x^{T}}\right)dt$$
(6)

シック・ビディボッィボッィー・

A solution for the Ito integral of a given function $\psi = \frac{\partial \varphi}{\partial x}$ can thus be obtained from the fundamental theorem:

$$\int_{a}^{b} \psi(\beta_{t}) d\beta_{t} = \varphi(\beta_{b}) - \varphi(\beta_{a}) - \frac{\sigma^{2}}{2} \int_{a}^{b} \frac{\partial^{2} \varphi}{\partial x \partial x^{T}} dt$$

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	00000000	00000	00000	0

KOLMOGOROV'S EQUATION

Recap: for the Brownian motion, the *marginal* and the *transition probability* are the *probability law*.

KOLMOGOROV'S EQUATION

Recap: for the Brownian motion, the *marginal* and the *transition probability* are the *probability law*.

For the (Langevin) Ito SDE:

$$dX_t = f(x_t, t) dt + g(x_t, t) d\beta_t$$

with non-random functions f, g, A. Kolmogorov has derived a PDE for the evolution of the *transition probability*:

$$\frac{\partial p(X_t|X_{\tau})}{\partial t} = \frac{\partial (p(X_t|X_{\tau})f(x,t))}{\partial x} + \frac{1}{2}\frac{\partial^2 (p(X_t|X_{\tau})g^2(x,t))}{\partial x^2}, \qquad \forall t > \tau$$
(7)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In the context of Physics this diffusion equation is called the Fokker-Planck equation. It can be formerly encapsulated by a *diffusion operator* $\mathcal{L}(p)$.

Initial condition: $\lim_{t\to\tau} p_{X_t|X_\tau}(x_t|x_\tau) = \delta(x_t - x_\tau)$. Boundary conditions: $p_{X_t|X_\tau}(\pm \infty \mid x_\tau) = 0$.

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

We can now bring observations into the picture as another Langevin equation:

$$y_t = h(x_t, t) + v_t \Leftrightarrow dz_t = h(x_t, t) + d\eta_t, \tag{8}$$

where v_t is another (independent) white-noise process, and $d\eta_t$ a Brownian motion: $\mathbb{E}[d\eta_t d\eta_t^T] = R(t)$.

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

We can now bring observations into the picture as another Langevin equation:

$$y_t = h(x_t, t) + v_t \iff dz_t = h(x_t, t) + d\eta_t, \tag{8}$$

where v_t is another (independent) white-noise process, and $d\eta_t$ a Brownian motion: $\mathbb{E}[d\eta_t d\eta_t^T] = R(t)$.

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	●0000	00000	0

We can now bring observations into the picture as another Langevin equation:

$$y_t = h(x_t, t) + v_t \iff dz_t = h(x_t, t) + d\eta_t, \tag{8}$$

where v_t is another (independent) white-noise process, and $d\eta_t$ a Brownian motion: $\mathbb{E}[d\eta_t d\eta_t^T] = R(t)$.

Given a suitable prior p_{X_0} , the *conditional density* $p_{X_t|Y_{0:t}}$ is the complete solution of the filtering problem.

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

We can now bring observations into the picture as another Langevin equation:

$$y_t = h(x_t, t) + v_t \iff dz_t = h(x_t, t) + d\eta_t, \tag{8}$$

where v_t is another (independent) white-noise process, and $d\eta_t$ a Brownian motion: $\mathbb{E}[d\eta_t d\eta_t^T] = R(t)$.

Given a suitable prior p_{X_0} , the *conditional density* $p_{X_t|Y_{0:t}}$ is the complete solution of the filtering problem.

Goal:

- Estimate the conditional (posterior) mean: $\hat{x}_t = \mathbb{E}[X_t|Y_{0:t}]$
- This is the *optimal* (minimum variance) estimate for $\mathbb{E}[L(x_t \hat{x}_t)|Y_{0:t}]$ for a class of *loss* functions $L(x \hat{x})$

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	0000	00000	0

The effect of discrete observations - between observations

Between observations, the density evolution must obey Kolmogorov's equation $\mathcal{L}(p_{X_t|Y_{0:t}}).$

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

THE EFFECT OF DISCRETE OBSERVATIONS - BETWEEN OBSERVATIONS Between observations, the density evolution must obey Kolmogorov's equation $\mathcal{L}(p_{X_t|Y_{0:t}})$.

We can use the properties of the stochastic differential of a (nice enough) function φ (6) to adapt it to the *conditional mean* \hat{x}_t and the *conditional covariance*:

 $\hat{P}_t^{\tau} = Cov(X_t, X_t | Y_{0:\tau}), \ (\tau = t \text{ for filtering problems})$

In case the filtering problem is **linear** with the Brownian process, these two **uniquely determine** the state.

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

THE EFFECT OF DISCRETE OBSERVATIONS - BETWEEN OBSERVATIONS Between observations, the density evolution must obey Kolmogorov's equation $\mathcal{L}(p_{X_t|Y_{0:t}})$.

We can use the properties of the stochastic differential of a (nice enough) function φ (6) to adapt it to the *conditional mean* \hat{x}_t and the *conditional covariance*:

 $\hat{P}_t^{\tau} = Cov(X_t, X_t | Y_{0:\tau}), \ (\tau = t \text{ for filtering problems})$

In case the filtering problem is **linear** with the Brownian process, these two **uniquely determine** the state.

Define the *conditional expectation operator* for a function φ :

$$\hat{\varphi}^{\tau}(X_t) = \mathbb{E}_{\tau}[\varphi(X_t)|Y_{0:\tau}] = \int \varphi(x_t) \, p_{X_t|Y_{0:\tau}}(x_t) \, dx_t \tag{9}$$

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	0000	00000	0

THE EFFECT OF DISCRETE OBSERVATIONS - BETWEEN OBSERVATIONS Between observations, the density evolution must obey Kolmogorov's equation $\mathcal{L}(p_{X_t|Y_{0:t}})$.

We can use the properties of the stochastic differential of a (nice enough) function φ (6) to adapt it to the *conditional mean* \hat{x}_t and the *conditional covariance*:

 $\hat{P}_t^{\tau} = Cov(X_t, X_t | Y_{0:\tau}), \ (\tau = t \text{ for filtering problems})$

In case the filtering problem is **linear** with the Brownian process, these two **uniquely determine** the state.

Define the *conditional expectation operator* for a function φ :

$$\hat{\varphi}^{\tau}(X_t) = \mathbb{E}_{\tau}[\varphi(X_t)|Y_{0:\tau}] = \int \varphi(x_t) \, p_{X_t|Y_{0:\tau}}(x_t) \, dx_t \tag{9}$$

The Kolmogorov equation for these two becomes:

$$\hat{x}_t^t = \widehat{f(x_t, t)}^t$$

$$\hat{P}_t^t = \left[\widehat{X_t f(x_t, t)^T}^t - \widehat{X_t}^t \widehat{f(x_t, t)^T}^t \right] + \left[\widehat{f(x_t, t)} \widehat{X_t}^T - \widehat{f(x_t, t)}^t (\widehat{X_t}^t)^T \right] + \widehat{G(t)} \widehat{Q(t)} \widehat{G(t)}^T$$

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	0000	00000	0

THE EFFECT OF DISCRETE OBSERVATIONS - AT THE OBSERVATIONS

We wish to determine the relation between $p_{X_t|Y_{0:t}^-} = p_{X_t|Y_{0:t_{k-1}}}$ and $p_{X_t|Y_{0:t'}}$, i.e. what happens at the observation at the time t_k .

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

THE EFFECT OF DISCRETE OBSERVATIONS - AT THE OBSERVATIONS

We wish to determine the relation between $p_{X_t|Y_{0:t}^-} = p_{X_t|Y_{0:t_{k-1}}}$ and $p_{X_t|Y_{0:t'}}$ i.e. what happens at the observation at the time t_k .

The latter must satisfy Bayes' rule:

$$p_{X_{t_k}|Y_{0:t_k}} = \frac{p_{Y_{t_k}|X_{t_k},Y_{0:t_{k-1}}} p_{X_{t_k}|Y_{0:t_{k-1}}}}{p_{Y_{t_k}|Y_{0:t_{k-1}}}}$$

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

THE EFFECT OF DISCRETE OBSERVATIONS - AT THE OBSERVATIONS

We wish to determine the relation between $p_{X_t|Y_{0:t}^-} = p_{X_t|Y_{0:t_{k-1}}}$ and $p_{X_t|Y_{0:t'}}$ i.e. what happens at the observation at the time t_k .

The latter must satisfy Bayes' rule:

$$p_{X_{t_k}|Y_{0:t_k}} = \frac{p_{Y_{t_k}|X_{t_k},Y_{0:t_{k-1}}} p_{X_{t_k}|Y_{0:t_{k-1}}}}{p_{Y_{t_k}|Y_{0:t_{k-1}}}}$$

For a white noise process, we recover the familiar general filtering update rule:

$$p_{X_{t_k}|Y_{0:t_k}} = \frac{p_{Y_{t_k}|X_{t_k}} p_{X_{t_k}|Y_{0:t_k}}}{\int p_{Y_{t_k}|\xi_{t_k}} p_{\xi_{t_k}|Y_{0:t_k}} d\xi}$$
(10)

For continuous observations y(t), $Y_{0:t}^-$ signifies the *left limit*.

・ロト < 団ト < 三ト < 三ト < ロト

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

CONTINUOUS OBSERVATIONS: THE KUSHNER EQUATION

Problem: there is no "time between observations", so Kolmogorov's equation needs to be modified to account for the observations.

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

CONTINUOUS OBSERVATIONS: THE KUSHNER EQUATION

Problem: there is no "time between observations", so Kolmogorov's equation needs to be modified to account for the observations.

The differential equation for $p_{X_t|Y_{0:t}}$ with continuous observations obeys the *Kushner equation*:

$$dp = \mathcal{L}(p) + (h_t - \hat{h}_t^t)^T R^{-1}(t) (dz_t - \hat{h}_t^t dt),$$
(11)

・ロト < 団ト < 三ト < 三ト < 三ト < ロト

where $h_t = h(X_t, t)$ is the "forcing" term from the Langevin equation for the **observations**, and *dz* are the continuous observations.

THE GENERAL EVOLUTION OF MOMENTS

As with the Kolmogorov equation, the Kushner equation can also be adapted for the conditional expectation of (nice enough) functions of X_t . Thus we obtain for the first two moments:

$$\begin{aligned} d\hat{x}_{t} &= \widehat{f}_{t}^{t} dt + \left[(\widehat{X_{t}h_{t}})^{T} - \widehat{X_{t}}^{t} \widehat{h}_{t}^{t} \right] R^{-1}(t) \left[dz_{t} - \widehat{h}_{t}^{t} dt \right] \\ d(\hat{P}_{t})_{ij} &= \left[(\widehat{X_{t}})_{i}(f_{t})_{j}^{t} - (\widehat{X_{t}})_{i}^{t} (\widehat{f_{t}})_{j}^{t} \right] + \left[(\widehat{X_{t}})_{j}(f_{t})_{i}^{t} - (\widehat{X_{t}})_{j}^{t} (\widehat{f_{t}})_{i}^{t} \right] + \left[(\widehat{X_{t}})_{j}(\widehat{f_{t}})_{i}^{t} \right] + (\widehat{G(t)Q(t)G(t)^{T}})_{ij}^{t} \\ &- \left[(\widehat{X_{t}})_{i}(h_{t})^{t} - (\widehat{X_{t}})_{i}^{t} (\widehat{h})_{j}^{t} \right] R^{-1}(t) \left[(\widehat{X_{t}})_{j}(h_{t})^{t} - (\widehat{X_{t}})_{j}^{t} (\widehat{h})_{j}^{t} \right] \\ &+ \left[(\widehat{X_{t}})_{i}(\widehat{X_{t}})_{j}(h_{t})^{t} - (\widehat{X_{t}})_{i} (\widehat{X_{t}})_{j}^{t} (\widehat{h})_{j}^{t} - (\widehat{X_{t}})_{i}^{t} (\widehat{X_{t}})_{j}^{t} (\widehat{h})_{j}^{t} \right] R^{-1}(t) \left[dz_{t} - \widehat{h}_{t}^{t} dt \right] \end{aligned}$$

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	●0000	0

LINEAR GAUSSIAN FILTERING PROBLEM

Given the complexity of the above, we now limit ourselves to **linear**, **Gaussian white noise** filtering problems:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$dX_t = F(t) X_t dt + G(t) d\beta_t$$

$$dY_t = M(t) X_t dt + d\eta_t$$

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	●0000	0

LINEAR GAUSSIAN FILTERING PROBLEM

Given the complexity of the above, we now limit ourselves to **linear**, **Gaussian white noise** filtering problems:

<□> < @> < E> < E> El= のQ@

$$dX_t = F(t) X_t dt + G(t) d\beta_t$$

$$dY_t = M(t) X_t dt + d\eta_t$$

• The state and time dynamics are separated.

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

LINEAR GAUSSIAN FILTERING PROBLEM

Given the complexity of the above, we now limit ourselves to **linear**, **Gaussian white noise** filtering problems:

$$dX_t = F(t) X_t dt + G(t) d\beta_t$$

$$dY_t = M(t) X_t dt + d\eta_t$$

- The state and time dynamics are separated.
- Thus, the conditional covariance *P* is no longer a function of the state: $\hat{P}_t^t = P_t^t$.

・ロト < 団ト < 三ト < 三ト < 三ト < ロト

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

RECAP: THE DISCRETE-DISCRETE KALMAN FILTER

$$X_{t+1} = F(t) X_t + G(t) w_{t+1}$$

 $y_{t+1} = M(t) X_t + v_t$

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	0000	0

RECAP: THE DISCRETE-DISCRETE KALMAN FILTER

$$X_{t+1} = F(t) X_t + G(t) w_{t+1}$$

$$y_{t+1} = M(t) X_t + v_t$$

Since the parameter space t is discrete, Kolmogorov's equation (7) simply decomposes into difference equations. For the moments, this gives:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\hat{x}_{t+1}^{t} = F(t) \, \hat{x}_{t}^{t} P_{t+1}^{t} = F(t) P_{t}^{t} F(t)^{T} + G(t) Q(t+1) G(t)^{T},$$

which are the familiar one-step ahead prediction relations.

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

RECAP: THE DISCRETE-DISCRETE KALMAN FILTER

$$X_{t+1} = F(t) X_t + G(t) w_{t+1}$$

$$y_{t+1} = M(t) X_t + v_t$$

Since the parameter space *t* is discrete, Kolmogorov's equation (7) simply decomposes into difference equations. For the moments, this gives:

$$\hat{x}_{t+1}^{t} = F(t) \, \hat{x}_{t}^{t} P_{t+1}^{t} = F(t) P_{t}^{t} F(t)^{T} + G(t) Q(t+1) G(t)^{T},$$

which are the familiar one-step ahead prediction relations.

At the observations, we proceed using the conjugacy of the Gaussians to simplify (10). If we define the *Kalman Gain* as:

$$K(t) = P_t^{t-} M^T(t) \left[M^T(t) P_t^{t-} M^T(t) + R(t) \right]^{-1}$$

We recover the familiar *filtering update* relations:

$$\hat{x}_{t}^{t} = \hat{x}_{t}^{t-1} + K(t) \left[y_{t} - M(t) \hat{x}_{t}^{t-1} \right]$$

$$P_{t}^{t} = P_{t}^{t-1} - K(t)M(t)P_{t}^{t-1}$$

・ロト < 団ト < 豆ト < 豆ト < ロト

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

THE CONTINUOUS-DISCRETE KALMAN FILTER

$$\dot{X}_t = F(t) X_t dt + G(t) d\beta_t$$
$$y_{t_k} = M(t_k) X_{t_k} + v_k$$

Note: we have the marginal $p_{X_t|Y_{0:t}}$ in closed form; one could simply evolve the state using Kolmogorov's equation.

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	0000	0

THE CONTINUOUS-DISCRETE KALMAN FILTER

$$\dot{X}_t = F(t) X_t dt + G(t) d\beta_t$$
$$y_{t_k} = M(t_k) X_{t_k} + v_k$$

Note: we have the marginal $p_{X_t|Y_{0:t}}$ in closed form; one could simply evolve the state using Kolmogorov's equation.

The Kolmogorov equation for the evolution of moments between observations simplifies to:

$$\begin{aligned} \dot{\hat{x}}_t^t &= F(t) \ \hat{x}_t^t \\ \dot{P}_t^t &= F(t) P_t^t + P_t^t F(t)^T + G(t) Q(t) G(t)^T \end{aligned}$$

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

THE CONTINUOUS-DISCRETE KALMAN FILTER

$$\dot{X}_t = F(t) X_t dt + G(t) d\beta_t$$
$$y_{t_k} = M(t_k) X_{t_k} + v_k$$

Note: we have the marginal $p_{X_t|Y_{0:t}}$ in closed form; one could simply evolve the state using Kolmogorov's equation.

The Kolmogorov equation for the evolution of moments between observations simplifies to:

$$\dot{\hat{x}}_t^t = F(t) \, \hat{x}_t^t \dot{P}_t^t = F(t) P_t^t + P_t^t F(t)^T + G(t) Q(t) G(t)^T$$

Since the observations are still discrete, we simply replace the previous values of the states with the left limits in the preceding version:

$$\hat{x}_{t_{k}}^{t_{k}^{+}} = \hat{x}_{t_{k}}^{t_{k}^{-}} + K(t_{k}) \left[y_{t_{k}} - M(t_{k}) \hat{x}_{t_{k}}^{t_{k}^{-}} \right]$$
$$P_{t_{k}}^{t_{k}^{+}} = P_{t_{k}}^{t_{k}^{-}} - K(t_{k}) M(t_{k}) P_{t_{k}}^{t_{k}^{-}}$$

This filter can be reformulated as a discrete filter by integrating over all intervals $[t_k, t_{k+1}]$ and using the *state transition matrix* $\Phi(t_{k+1}, t_k)$.

うせん 正明 エル・エット 中マット

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

 $\dot{X}_t = F(t) X_t dt + G(t) d\beta_t$ $\dot{z}_t = M(t) X_t dt + d\eta_t$

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

$$\dot{X}_t = F(t) X_t dt + G(t) d\beta_t$$
$$\dot{z}_t = M(t) X_t dt + d\eta_t$$

Here, we have to adapt the *Kushner equation* for the moments. Fortunately, the separability $f(X_t, t) = F(t) X_t \dots$ significantly simplifies the terms of the type:

$$(\widehat{X_t f^T}^t - \widehat{X_t}^t \widehat{f^T}^t) = (\widehat{X_t X_t^T}^t - \widehat{X_t}^t \widehat{X_t^T}^t) F(t)^T \text{ etc.}$$

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

$$\dot{X}_t = F(t) X_t dt + G(t) d\beta_t$$
$$\dot{z}_t = M(t) X_t dt + d\eta_t$$

Here, we have to adapt the *Kushner equation* for the moments. Fortunately, the separability $f(X_t, t) = F(t) X_t \dots$ significantly simplifies the terms of the type:

$$(\widehat{X_t f^T}^t - \widehat{X_t}^t \widehat{f^T}^t) = (\widehat{X_t X_t^T}^t - \widehat{X_t}^t \widehat{X_t^T}^t) F(t)^T \text{ etc.}$$

By defining the Kalman gain in this instance as:

$$K(t) = P_t^t M(t)^T R(t)^{-1},$$

we get:

$$\begin{aligned} d\hat{x}_{t}^{t} &= F(t) \, \hat{x}_{t}^{t} \, dt + K(t) \left[dz_{t} - M(t) \, \hat{x}_{t}^{t} \, dt \right] \\ \dot{P}_{t}^{t} &= F(t) \, P_{t}^{t} + P_{t}^{t} \, F(t)^{T} + G(t) \, Q(t) \, G(t)^{T} - K(t) \, M(t) \, P_{t}^{t}, \end{aligned}$$

where dz_t is the (continuously) observed value.

うせん 日間 スポッスポット 御 く ロッ

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

$$\dot{X}_t = F(t) X_t dt + G(t) d\beta_t$$
$$\dot{z}_t = M(t) X_t dt + d\eta_t$$

Here, we have to adapt the *Kushner equation* for the moments. Fortunately, the separability $f(X_t, t) = F(t) X_t \dots$ significantly simplifies the terms of the type:

$$(\widehat{X_t f^T}^t - \widehat{X_t}^t \widehat{f^T}^t) = (\widehat{X_t X_t^T}^t - \widehat{X_t}^t \widehat{X_t^T}^t) F(t)^T \text{ etc.}$$

By defining the Kalman gain in this instance as:

$$K(t) = P_t^t M(t)^T R(t)^{-1},$$

we get:

$$\begin{aligned} d\hat{x}_{t}^{t} &= F(t) \ \hat{x}_{t}^{t} \ dt + K(t) \ [dz_{t} - M(t) \ \hat{x}_{t}^{t} \ dt] \\ \dot{P}_{t}^{t} &= F(t) \ P_{t}^{t} + P_{t}^{t} \ F(t)^{T} + G(t) \ Q(t) \ G(t)^{T} - K(t) \ M(t) \ P_{t}^{t}, \end{aligned}$$

where dz_t is the (continuously) observed value.

・ロト < 団ト < 三ト < 三ト < 三ト < ロト

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

THE KALMAN-BUCY FILTER - SOME PROPERTIES

• There is no more separation between the evolution between- and the jumps at - the observations: we get one equation.

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

THE KALMAN-BUCY FILTER - SOME PROPERTIES

• There is no more separation between the evolution between- and the jumps at - the observations: we get one equation.

・ロト・(型ト・(ヨト・(ロト))
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・</li

• The Kalman gain leverages the influence of the residual on the state.

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	0

THE KALMAN-BUCY FILTER - SOME PROPERTIES

- There is no more separation between the evolution between- and the jumps at the observations: we get one equation.
- The Kalman gain leverages the influence of the residual on the state.
- The equation for the evolution of the conditional variance is known as the *Riccati equation*.

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	•

CONCLUSION

• Dynamic programming / Reinforcement learning

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	•

CONCLUSION

- Dynamic programming / Reinforcement learning
- Statistical mechanics

Introduction	STOCHASTIC PROCESSES	GENERAL FILTERING	CONTINUOUS-TIME KALMAN FILTER	Conclusion
00	0000000	00000	00000	•

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CONCLUSION

- Dynamic programming / Reinforcement learning
- Statistical mechanics
- Dynamical systems

REFERENCES I

- ALAZARD, D. Introduction to kalman filtering. https://personnel. isae-supaero.fr/IMG/pdf/introkalman_e_08072019.pdf.
- [2] DURBIN, J., AND KOOPMAN, S. J. *Time series analysis by State Space Methods*. Oxford University Press, 2012.
- [3] GELB, A. Applied Optimal estimation. written by technical staff, the Analytic Sciences Corporation. edited by Arthur Gelb, etc. M.I.T. Press, 1974.
- [4] JAZWINSKI, A. H. Stochastic processes and filtering theory. Academic Press, 1970.
- [5] JOSHI, M. S. The concepts and practice of Mathematical Finance. Cambridge University Press, 2011.
- [6] KITAGAWA, G., AND GERSH, W. Smoothness priors analysis of time series. Springer, 1996.
- [7] LEWIS, F. L., POPA, D., AND XIE, L. Optimal and robust estimation: With an introduction to stochastic control theory. CRC Press, 2008.
- [8] TRIANTAFYLLOPOULOS, K. Bayesian inference of State Space Models: Kalman filtering and beyond. Springer, 2021.