UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO FIZIKA, MATEMATIČNO FIZIKALNA SMER

Andrej Leban

Časovno odvisni tok skozi kvantno piko v prisotnosti napetostne sonde

Diplomsko delo

MENTOR: doc. dr. Tomaž Rejec

Ljubljana, 2016

Izjava o avtorstvu in objavi elektronske oblike

izjavljam:

- da sem diplomsko delo z naslovom *Časovno odvisni tok skozi kvantno piko v* prisotnosti napetostne sonde izdelal samostojno pod mentorstvom doc. dr. Tomaža Rejca,
- da je elektronska oblika dela identična s tiskano obliko in
- da Fakulteti za matematiko in fiziko Univerze v Ljubljani dovoljujem objavo elektronske oblike svojega dela na spletnih straneh Repozitorija Univerze v Ljubljani.

Ljubljana, dne

Podpis:

Zahvala

Zahvaliti bi se želel mentorju doc. dr. Tomažu Rejcu, ki mi je predlagal zanimivo temo in pomagal na poti do zaključka, ter staršem, ki so mi omogočili študij.

Izvleček

V diplomskem delu preučujem vpliv Büttikerjeve napetostne sonde na časovni potek toka skozi idealizirano kvantno piko v resonančnem režimu. Opis temelji na zapisu Schrödingerjeve enačbe sistema v približku tesne vezi in posledični numerični integraciji le-te. Pravilno obnašanje napetostne sonde karakterizira časovno odvisna napetost na njej, potek katere določim numerično z iteracijskim postopkom. Stacionarne vrednosti toka se ujemajo z napovedmi, ki jih izpeljem iz formalizma Landauerja in Büttikerja. Dekoherenca, ki jo v sistem vnesem z napetostno sondo, pa znatno zmanjša čas, ki ga tok potrebuje, da doseže stacionarno stanje. Ta učinek opišem z modelom, ki prispeva spoznanje, da je hitrost približevanja toka stacionarni vrednosti okvirno premo sorazmerna celotni resonančni širini sistema.

Ključne besede: kvantna pika, Büttikerjeva napetostna sonda, resonančno tuneliranje, dekoherenca **PACS**: 72.10.-d, 73.23.-b, 73.63.-b, 03.65.Yz

Abstract

This thesis examines the effects of a Büttiker voltage probe on the time-dependent current through an idealized resonant quantum dot. The system is described by a tight binding Schrödinger equation which is then integrated numerically to obtain the time-dependent current. Correct probe behavior is provided by a time-dependent voltage profile that is obtained numerically via an iterative scheme. The stationary current values are found to be in agreement with predictions derived from the Landauer-Büttiker formalism. The time-dependent current characteristics are significantly affected by the probe-introduced decoherence, as is evident by a shortened time it takes for the current to reach its stationary value. This effect is approximated by a model whose parameter describes the time it takes for the current to reach its stationary value. Examining the data, the parameter values are found to be roughly proportional to the total resonance width of the system.

Keywords: quantum dot, Büttiker voltage probe, resonant tunneling, decoherence **PACS**: 72.10.-d, 73.23.-b, 73.63.-b, 03.65.Yz

Kazalo

1Uvod112Ozadje122.1Osnovni pojmi v mezoskopskem transportu132.2Stacionarna Schrödingerjeva enačba v idealni kvantni žici142.3Tok skozi neskončno verigo172.4Formalizem Landauerja in Büttikerja172.4.1Büttikerjeva razširitev za več terminalov162.5Kvantna (de)koherenca222.5.1Koherenca in transmisija213Formulacija problema223.1Opis sistema223.1.1Napetostna sonda263.2.2Transmisija skozi piko v približku tesne vezi273.2.3Oblika prepustnosti v bližini resonance333.4Pomen resonančnih širin333.3Shema za časovno integracijo323.3.1Zaključitev stacionarnega sistema333.3.2Zaključitev sistema v časovno odvisni shemi344.1Priklop sonde364.1Priklop sonde364.1Priklop sonde444.3Model za vpliv γ_2 na časovni potek toka465Zaključek49Literatura49Dodatek A Izpeljava prepustnosti51A.1Pika brez sonde51A.1Pika brez sonde51A.1Pika brez sonde51A.1Pika brez sonde51A.1Pika brez sonde51A.2Pol b10A.3Pol b104.4 <th colspan="5">Seznam slik 9</th>	Seznam slik 9				
2Ozadje152.1Osnovni pojmi v mezoskopskem transportu152.2Stacionarna Schrödingerjeva enačba v idealni kvantni žici162.3Tok skozi neskončno verigo172.4Formalizem Landauerja in Büttikerja172.4.1Büttikerjeva razširitev za več terminalov192.5Kvantna (de)koherenca202.5.1Koherenca in transmisija213Formulacija problema263.1Opis sistema263.2Transmisija skozi piko v približku tesne vezi273.2.1Pika, povezana s polneskončnima vodnikoma283.2.2Dodana napetostna sonda293.2.3Oblika prepustnosti v bližini resonance303.2.4Pomen resonančnih širin363.3Shema za časovno integracijo333.3.1Zaključitev stacionarnega sistema323.3.2Zaključitev sistema v časovno odvisni shemi363.3.3Časovna propagacija364Rezultati374.1Priklop sonde444.3Model za vpliv γ_2 na časovni potek toka465Zaključek49Literatura49Dodatek A Izpeljava prepustnosti55A.1Pika berz sonde51A.2Polrest statemen4.3Polrest statemen5A.1Pika berz sonde514.1Pika berz sonde514.2Polrest statemen <th>1</th> <th>Uvo</th> <th>od</th> <th>11</th>	1	Uvo	od	11	
2.1Ösnovni pojmi v mezoskopskem transportu132.2Stacionarna Schrödingerjeva enačba v idealni kvantni žici142.3Tok skozi neskončno verigo172.4Formalizem Landauerja in Büttikerja172.4.1Büttikerjeva razširitev za več terminalov182.5.1Koherenca202.5.1Koherenca in transmisija213Formulacija problema253.1Opis sistema263.1.1Napetostna sonda263.2.2Dodana napetostna sonda263.2.3Oblika prepustnosti v bližini resonance303.4Pomen resonančnih širin323.3Shema za časovno integracijo323.3.1Zaključitev stacionarnega sistema333.3.2Zaključitev sistema v časovno odvisni shemi343.3.3Časovna propagacija364Rezultati374.1Poika prisotnosti sonde444.3Model za vpliv γ_2 na časovni potek toka465Zaključek42Literatura449boljeni poteki toka v prisotnosti sonde465Zaključek55A.1Pika brez sonde55A.2Da brez sonde55A.2Da brez sonde55	2	Oza	dje	13	
2.2 Stacionarna Schrödingerjeva enačba v idealni kvantni žici 14 2.3 Tok skozi neskončno verigo 17 2.4 Formalizem Landauerja in Büttikerja 17 2.4.1 Büttikerjeva razširitev za več terminalov 16 2.5 Kvantna (de)koherenca 26 2.5.1 Koherenca in transmisija 21 3 Formulacija problema 22 3.1 Opis sistema 22 3.1.1 Napetostna sonda 26 3.2 Transmisija skozi piko v približku tesne vezi 27 3.2.1 Pika, povezana s polneskončnima vodnikoma 26 3.2.2 Dodana napetostna sonda 26 3.2.2 Dodana napetostna sonda 26 3.2.3 Oblika prepustnosti v bližini resonance 30 3.2.4 Pomen resonančnih širin 32 3.3 Shema za časovno integracijo 32 3.3.1 Zaključitev stacionarnega sistema 33 3.3.2 Zaključitev sistema v časovno odvisni shemi 34 3.3.3 Časovna propagacija 36 4.1 Poikole za vpliv γ_2 na časovni pote		2.1	Osnovni pojmi v mezoskopskem transportu	13	
2.3Tok skozi neskončno verigo172.4Formalizem Landauerja in Büttikerja172.4.1Büttikerjeva razširitev za več terminalov162.5Kvantna (de)koherenca202.5.1Koherenca in transmisija213Formulacija problema253.1Opis sistema263.1.1Napetostna sonda263.2Transmisija skozi piko v približku tesne vezi273.2.1Pika, povezana s polneskončnima vodnikoma263.2.2Dodana napetostna sonda263.2.3Oblika prepustnosti v bližini resonance303.4Pomen resonančnih širin323.3Shema za časovno integracijo323.3.1Zaključitev stacionarnega sistema333.3.2Zaključitev sistema v časovno odvisni shemi343.3.3Časovna propagacija364Rezultati374.1Poločanje časovnega poteka napetosti na sondi444.3Model za vpliv γ_2 na časovni potek toka465Zaključek49Literatura49Dodatek A Izpeljava prepustnosti53A.1Pika brez sonde53A.1Pika brez sonde53A.2Pol potevi tori versi53A.3Pol potevi tori versi53A.1Pika brez sonde53A.2Pol potevi tori versi53A.3Pol potevi tori versi53A.3Pol potevi torevisi53 <td>2.2</td> <td>Stacionarna Schrödingerjeva enačba v idealni kvantni žici</td> <td>15</td>		2.2	Stacionarna Schrödingerjeva enačba v idealni kvantni žici	15	
2.4 Formalizem Landauerja in Büttikerja 17 2.4.1 Büttikerjeva razširitev za več terminalov 19 2.5 Kvantna (de)koherenca 20 2.5.1 Koherenca in transmisija 21 3 Formulacija problema 25 3.1 Opis sistema 26 3.1.1 Napetostna sonda 26 3.2 Transmisija skozi piko v približku tesne vezi 27 3.2.1 Pika, povezana s polneskončnima vodnikoma 26 3.2.2 Dodana napetostna sonda 26 3.2.3 Oblika prepustnosti v bližini resonance 30 3.2.4 Pomen resonančnih širin 32 3.3.1 Zaključitev stacionarnega sistema 33 3.3.1 Zaključitev stacionarnega sistema 33 3.3.2 Zaključitev sistema v časovno odvisni shemi 34 3.3.3 Časovna propagacija 36 4 Rezultati 37 4.1 Določanje časovnega poteka napetosti na sondi 44 4.2 Dobljeni poteki toka v prisotnosti sonde 44 4.3 Model za vpliv γ_2 na časovni potek toka		2.3	Tok skozi neskončno verigo	17	
2.4.1 Büttikerjeva razširitev za več terminalov 19 2.5 Kvantna (de)koherenca 20 2.5.1 Koherenca in transmisija 21 3 Formulacija problema 25 3.1 Opis sistema 26 3.1.1 Napetostna sonda 26 3.2.1 Pika, povezana s polneskončnima vodnikoma 26 3.2.2 Dodana napetostna sonda 26 3.2.3 Oblika prepustnosti v bližini resonance 30 3.2.4 Pomen resonančnih širin 32 3.3 Shema za časovno integracijo 32 3.3.1 Zaključitev stacionarnega sistema 32 3.3.2 Zaključitev sistema v časovno odvisni shemi 34 3.3.3 Časovna propagacija 36 4 Rezultati 37 4.1 Priklop sonde 36 4.2 Dobljeni poteki toka v prisotnosti sonde 44 4.3 Model za vpliv γ_2 na časovni potek toka 46 5 Zaključek 49 Dodatek A Izpeljava prepustnosti 53 A.1 Pika brez sonde 5		2.4	Formalizem Landauerja in Büttikerja	17	
2.5Kvantna (de)koherenca262.5.1Koherenca in transmisija213Formulacija problema253.1Opis sistema263.2Transmisija skozi piko v približku tesne vezi273.2.1Pika, povezana s polneskončnima vodnikoma263.2.2Dodana napetostna sonda263.2.3Oblika prepustnosti v bližini resonance363.2.4Pomen resonančnih širin323.3Shema za časovno integracijo323.3.1Zaključitev stacionarnega sistema333.3.2Zaključitev sistema v časovno odvisni shemi363.3.3Časovna propagacija364Rezultati374.1Določanje časovnega poteka napetosti na sondi414.2Dobljeni poteki toka v prisotnosti sonde465Zaključek46Literatura49Dodatek A Izpeljava prepustnosti53A.1Pika brez sonde53			2.4.1 Büttikerjeva razširitev za več terminalov	19	
2.5.1Koherenca in transmisija213Formulacija problema253.1Opis sistema263.1.1Napetostna sonda263.2Transmisija skozi piko v približku tesne vezi273.2.1Pika, povezana s polneskončnima vodnikoma263.2.2Dodana napetostna sonda263.2.3Oblika prepustnosti v bližini resonance303.2.4Pomen resonančnih širin323.3Shema za časovno integracijo323.3.1Zaključitev stacionarnega sistema333.3.2Zaključitev sistema v časovno odvisni shemi363.3.3Časovna propagacija364Rezultati374.1Priklop sonde465Zaključek46Literatura49Dodatek A Izpeljava prepustnosti53A.1Pika brez sonde55A.2De hereford55		2.5	Kvantna (de)koherenca	20	
3 Formulacija problema 25 3.1 Opis sistema 26 3.1.1 Napetostna sonda 26 3.2 Transmisija skozi piko v približku tesne vezi 27 3.2.1 Pika, povezana s polneskončnima vodnikoma 28 3.2.2 Dodana napetostna sonda 26 3.2.3 Oblika prepustnosti v bližini resonance 30 3.2.4 Pomen resonančnih širin 32 3.3 Shema za časovno integracijo 32 3.3.1 Zaključitev stacionarnega sistema 33 3.3.2 Zaključitev sistema v časovno odvisni shemi 34 3.3.3 Časovna propagacija 36 4 Rezultati 37 4.1 Priklop sonde 39 4.1.1 Določanje časovnega poteka napetosti na sondi 41 4.2 Dobljeni poteki toka v prisotnosti sonde 46 5 Zaključek 49 Literatura 49 Dodatek A Izpeljava prepustnosti 53 A.1 Pika brez sonde 53			2.5.1 Koherenca in transmisija	21	
3.1 Opis sistema 25 3.1.1 Napetostna sonda 26 3.2 Transmisija skozi piko v približku tesne vezi 27 3.2.1 Pika, povezana s polneskončnima vodnikoma 28 3.2.2 Dodana napetostna sonda 29 3.2.3 Oblika prepustnosti v bližini resonance 30 3.2.4 Pomen resonančnih širin 32 3.3 Shema za časovno integracijo 32 3.3.1 Zaključitev stacionarnega sistema 33 3.3.2 Zaključitev sistema v časovno odvisni shemi 34 3.3.3 Časovna propagacija 36 4 Rezultati 37 4.1 Priklop sonde 36 4.2 Dobljeni poteki toka v prisotnosti sonde 44 4.3 Model za vpliv γ_2 na časovni potek toka 46 5 Zaključek 49 Literatura 49 Dodatek A Izpeljava prepustnosti 53 A.1 Pika brez sonde 53 A.1 Pika brez sonde 53	3	For	mulacija problema	25	
3.1.1 Napetostna sonda 26 3.2 Transmisija skozi piko v približku tesne vezi 27 3.2.1 Pika, povezana s polneskončnima vodnikoma 28 3.2.2 Dodana napetostna sonda 29 3.2.3 Oblika prepustnosti v bližini resonance 30 3.2.4 Pomen resonančnih širin 36 3.3 Shema za časovno integracijo 36 3.3.1 Zaključitev stacionarnega sistema 37 3.3.2 Zaključitev sistema v časovno odvisni shemi 36 3.3.3 Časovna propagacija 36 4 Rezultati 37 4.1 Priklop sonde 39 4.1.1 Določanje časovnega poteka napetosti na sondi 44 4.3 Model za vpliv γ_2 na časovni potek toka 46 5 Zaključek 49 Literatura 49 49 Dodatek A Izpeljava prepustnosti 53 A.1 Pika brez sonde 53 A.1 Pika brez sonde 53		3.1	Opis sistema	25	
3.2 Transmisija skozi piko v približku tesne vezi 27 3.2.1 Pika, povezana s polneskončnima vodnikoma 28 3.2.2 Dodana napetostna sonda 29 3.2.3 Oblika prepustnosti v bližini resonance 30 3.2.4 Pomen resonančnih širin 32 3.3 Shema za časovno integracijo 32 3.3.1 Zaključitev stacionarnega sistema 32 3.3.2 Zaključitev sistema v časovno odvisni shemi 34 3.3.3 Časovna propagacija 36 4 Rezultati 37 4.1 Priklop sonde 39 4.1.1 Določanje časovnega poteka napetosti na sondi 41 4.2 Dobljeni poteki toka v prisotnosti sonde 44 4.3 Model za vpliv γ_2 na časovni potek toka 46 5 Zaključek 49 Literatura 49 Dodatek A Izpeljava prepustnosti 52 A.1 Pika brez sonde 53			3.1.1 Napetostna sonda	26	
3.2.1 Pika, povezana s polneskončnima vodnikoma 28 3.2.2 Dodana napetostna sonda 29 3.2.3 Oblika prepustnosti v bližini resonance 30 3.2.4 Pomen resonančnih širin 32 3.3 Shema za časovno integracijo 32 3.3.1 Zaključitev stacionarnega sistema 32 3.3.2 Zaključitev sistema v časovno odvisni shemi 34 3.3.3 Časovna propagacija 36 4 Rezultati 37 4.1 Priklop sonde 39 4.1.1 Določanje časovnega poteka napetosti na sondi 41 4.2 Dobljeni poteki toka v prisotnosti sonde 44 4.3 Model za vpliv γ_2 na časovni potek toka 46 5 Zaključek 49 Literatura 49 Dodatek A Izpeljava prepustnosti 52 A.1 Pika brez sonde 53 A.1 Pika brez sonde 53		3.2	Transmisija skozi piko v približku tesne vezi	27	
3.2.2 Dodana napetostna sonda 29 3.2.3 Oblika prepustnosti v bližini resonance 30 3.2.4 Pomen resonančnih širin 32 3.3 Shema za časovno integracijo 32 3.3.1 Zaključitev stacionarnega sistema 32 3.3.2 Zaključitev stacionarnega sistema 33 3.3.1 Zaključitev sistema v časovno odvisni shemi 34 3.3.2 Zaključitev sistema v časovno odvisni shemi 34 3.3.3 Časovna propagacija 36 4 Rezultati 37 4.1 Priklop sonde 39 4.1.1 Določanje časovnega poteka napetosti na sondi 41 4.2 Dobljeni poteki toka v prisotnosti sonde 44 4.3 Model za vpliv γ_2 na časovni potek toka 46 5 Zaključek 49 Literatura 49 Dodatek A Izpeljava prepustnosti 53 A.1 Pika brez sonde 55 A.2 Do bu her meritate meritate 55			3.2.1 Pika, povezana s polneskončnima vodnikoma	28	
3.2.3 Oblika prepustnosti v bližini resonance 30 3.2.4 Pomen resonančnih širin 32 3.3 Shema za časovno integracijo 32 3.3 Shema za časovno integracijo 32 3.3.1 Zaključitev stacionarnega sistema 35 3.3.2 Zaključitev stacionarnega sistema 36 3.3.2 Zaključitev sistema v časovno odvisni shemi 34 3.3.3 Časovna propagacija 36 4 Rezultati 37 4.1 Priklop sonde 39 4.1.1 Določanje časovnega poteka napetosti na sondi 41 4.2 Dobljeni poteki toka v prisotnosti sonde 44 4.3 Model za vpliv γ_2 na časovni potek toka 46 5 Zaključek 49 Literatura 49 Dodatek A Izpeljava prepustnosti 53 A.1 Pika brez sonde 53 A.2 D.1 Soude 53			3.2.2 Dodana napetostna sonda	29	
3.2.4 Pomen resonančnih širin 32 3.3 Shema za časovno integracijo 32 3.3.1 Zaključitev stacionarnega sistema 33 3.3.2 Zaključitev sistema v časovno odvisni shemi 34 3.3.3 Časovna propagacija 34 3.3.3 Časovna propagacija 36 4 Rezultati 37 4.1 Priklop sonde 36 4.1.1 Določanje časovnega poteka napetosti na sondi 36 4.2 Dobljeni poteki toka v prisotnosti sonde 44 4.3 Model za vpliv γ_2 na časovni potek toka 46 5 Zaključek 49 Literatura 49 Dodatek A Izpeljava prepustnosti 53 A.1 Pika brez sonde 53			3.2.3 Oblika prepustnosti v bližini resonance	30	
3.3 Shema za časovno integracijo 32 3.3.1 Zaključitev stacionarnega sistema 33 3.3.2 Zaključitev sistema v časovno odvisni shemi 34 3.3.3 Časovna propagacija 36 4 Rezultati 37 4.1 Priklop sonde 38 4.1.1 Določanje časovnega poteka napetosti na sondi 41 4.2 Dobljeni poteki toka v prisotnosti sonde 44 4.3 Model za vpliv γ_2 na časovni potek toka 46 5 Zaključek 49 Literatura 49 Dodatek A Izpeljava prepustnosti 53 A.1 Pika brez sonde 53			3.2.4 Pomen resonančnih širin	32	
3.3.1 Zaključitev stacionarnega sistema 33 3.3.2 Zaključitev sistema v časovno odvisni shemi 34 3.3.3 Časovna propagacija 36 4 Rezultati 37 4.1 Priklop sonde 39 4.1.1 Določanje časovnega poteka napetosti na sondi 41 4.2 Dobljeni poteki toka v prisotnosti sonde 44 4.3 Model za vpliv γ_2 na časovni potek toka 46 5 Zaključek 49 Literatura 49 Dodatek A Izpeljava prepustnosti 53 A.1 Pika brez sonde 53		3.3	Shema za časovno integracijo	32	
3.3.2 Zaključitev sistema v časovno odvisni shemi 34 3.3.3 Časovna propagacija 36 4 Rezultati 37 4.1 Priklop sonde 38 4.1.1 Določanje časovnega poteka napetosti na sondi 41 4.2 Dobljeni poteki toka v prisotnosti sonde 44 4.3 Model za vpliv γ_2 na časovni potek toka 46 5 Zaključek 42 Literatura 49 Dodatek A Izpeljava prepustnosti 53 A.1 Pika brez sonde 53			3.3.1 Zaključitev stacionarnega sistema	33	
3.3.3 Časovna propagacija 36 4 Rezultati 37 4.1 Priklop sonde 39 4.1.1 Določanje časovnega poteka napetosti na sondi 41 4.2 Dobljeni poteki toka v prisotnosti sonde 44 4.3 Model za vpliv γ_2 na časovni potek toka 46 5 Zaključek 49 Literatura 49 Dodatek A Izpeljava prepustnosti 53 A.1 Pika brez sonde 53			3.3.2 Zaključitev sistema v časovno odvisni shemi	34	
4 Rezultati 37 4.1 Priklop sonde 38 4.1.1 Določanje časovnega poteka napetosti na sondi 41 4.2 Dobljeni poteki toka v prisotnosti sonde 44 4.3 Model za vpliv γ_2 na časovni potek toka 46 5 Zaključek 49 Literatura 49 Dodatek A Izpeljava prepustnosti 53 A.1 Pika brez sonde 53			3.3.3 Časovna propagacija	36	
4.1 Priklop sonde 39 4.1.1 Določanje časovnega poteka napetosti na sondi 41 4.2 Dobljeni poteki toka v prisotnosti sonde 42 4.3 Model za vpliv γ_2 na časovni potek toka 44 5 Zaključek 46 Literatura 49 Dodatek A Izpeljava prepustnosti 53 A.1 Pika brez sonde 53	4	Rez	ultati	37	
4.1.1 Določanje časovnega poteka napetosti na sondi		4.1	Priklop sonde	39	
4.2 Dobljeni poteki toka v prisotnosti sonde 44 4.3 Model za vpliv γ_2 na časovni potek toka 46 5 Zaključek 49 Literatura 49 Dodatek A Izpeljava prepustnosti 53 A.1 Pika brez sonde 53			4.1.1 Določanje časovnega poteka napetosti na sondi	41	
4.3 Model za vpliv γ_2 na časovni potek toka 46 5 Zaključek 49 Literatura 49 Dodatek A Izpeljava prepustnosti 53 A.1 Pika brez sonde 53		4.2	Dobljeni poteki toka v prisotnosti sonde	44	
5 Zaključek 49 Literatura 49 Dodatek A Izpeljava prepustnosti 53 A.1 Pika brez sonde 53 A.2 De horse statutova prepustnosti 53		4.3	Model za vpliv γ_2 na časovni potek toka	46	
Literatura 49 Dodatek A Izpeljava prepustnosti 53 A.1 Pika brez sonde 53 A.2 De bere statet source 53	5	Zak	ljuček	49	
Dodatek A Izpeljava prepustnosti 53 A.1 Pika brez sonde 55 A.2 De beservetette sous b 55	Li	terat	ura	49	
A.2 De la servici de s	D	odate	ek A Izpeliava prepustnosti	53	
		A.1	Pika brez sonde	53	
A.Z Dogana napetostna songa		A.2	Dodana napetostna sonda	54	

Seznam slik

2.1	Pojav 2DEG v polprevodniški heterostrukturi
2.2	Kvantna pika v 2DEG 15
2.3	Kvantizirana prevodnost kvantnega točkovnega stika 18
3.1	Skica sistema
3.2	Shema sistemu analognega električnega vezja
3.3	Prepustnost za piko brez sonde
3.4	Prepustnost za piko z dodano sondo
4.1	Časovni potek toka skozi sisteme brez sonde $\ldots \ldots \ldots \ldots \ldots 38$
4.2	Neto gostota toka za sistem brez sonde
4.3	Tok pri stacionarni napetosti na sondi 40
4.4	Prehodni tok v sondo
4.5	Približki $U_2(t)$ v iterativni shemi
4.6	Tokovi v iterativni shemi
4.7	Periodogram toka v sondo 44
4.8	Časovni potek toka v prisotnosti napetostne sonde - 1 45
4.9	Časovni potek toka v prisotnosti napetostne sonde - 2 45
4.10	Normirani poteki toka
4.11	Prileganje modela za $\gamma_0 = 0.15$
4.12	Prileganje modela za $\gamma_0 = 0.3$

Poglavje 1

Uvod

V diplomskem delu preučujem vpliv kvantne dekoherence na časovni potek električnega toka skozi idealiziran *mezoskopski* sistem, obravnavan numerično v približku tesne vezi. Za to sem si izbral preprost model, sestavljen iz treh polneskončnih, enodimenzionalnih kvantnih žic, povezanih s centralno kvantno piko. Dekoherenco v tak sistem nadzorovano vpeljem tako, da iz ene izmed žic naredim *Büttikerjevo napetostno sondo* [1].

S pojmom *mezoskopske* velikosti so mišljene dimenzije sistemov, primerljive s povprečno prosto potjo elektronov oziroma njihovo koherenčno dolžino. Tako za napoved stacionarnih vrednosti toka ne velja več *makroskopski* Ohmov zakon, hkrati pa so sistemi še vedno sestavljeni iz tisočih atomov in ne moremo govoriti o resnični atomski - *mikroskopski* skali. V zadnjem času se je za področje morda bolje prijel izraz *nanofizika*, ki pa ga je potrebno razumeti na podoben način.

Glede na to se v modelu nisem ukvarjal s podrobnostmi na atomski ravni, kot je mrežni potencial; privzel sem neodvisne elektrone, prosto gibajoče se v *približku efektivne mase.* Model potencialno tako opiše celo vrsto praktičnih realizacij, tipičen primer pa bi predstavljala realizacija v *dvodimenzionalnem elektronskem plinu*, o čem nekaj več povem v 2. poglavju. Pogoj za zaznavo pojavov kvantne koherence v takšnih sistemih je zelo nizka temperatura, zaradi česar sem se tudi v teoretičnem modelu vedno držal nizkotemperaturne limite. Poleg tega poglavje predstavi osnovne gradnike, s katerimi sem se lotil reševanja problema. Med temi gre izpostaviti *približek tesne vezi*, ki se ga v obravnavi problemov te vrste vpelje preko diskretizacije prostora. Povezavo med tem, kvantno mehanskim oziroma mikroskopskim opisom ter stacionarnim električnim tokom pa poda na kratko povzeti *formalizem Landauerja in Büttikerja*. Kot omenjeno je meja med mezo- in makroskopskim sistemom pogosto odvisna od *koherence* elektronov, ki ji je posvečeno zadnje podpoglavje 2. poglavja.

Napetostna sonda je v najpreprostejši obliki vodnik, v katerega ne teče tok. Ta, nekoliko trivialna ugotovitev pomeni, da se vsak vstopajoč elektron kompenzira z izhajajočim; čas, ki ga posamičen elektron v njej prebije, pa je naključen in tako sondo naredi za vir dekoherence. V okviru formalizma Landauerja in Büttikerja se Büttikerjeve sonde pogosto uporablja za fenomenološko modeliranje procesov, ki uničujejo elektronsko koherenco, a so njihovi dejanski mehanizmi teoretično precej bolj zahtevni. Napovedi tega formalizma za stacionarne lastnosti transporta tako v prisotnosti kot odsotnosti sonde podrobneje obdelam v 3. poglavju. Tam tudi okvirno opišem shemo za numerično integracijo. Ta se opira na članek avtorjev Kurth in dr. [2] in je delo mentorja diplomskega dela, dr. Tomaža Rejca.

V 4. poglavju najprej prikažem rezultate časovne integracije sistema v odsotnosti sonde. Nato opišem postopek, ki sem ga dodal integracijski shemi, da lahko iz poljubnega vodnika naredim napetostno sondo. Postopek iterativno za dan nabor parametrov sistema poišče takšen potek napetosti na sondi, da je tok vanjo v vsakem trenutku praktično ničen. S pridobljenimi poteki napetosti lahko nato predstavim pravilne časovne poteke toka skozi kvantno piko. Poleg teh poglavje tudi vpelje model, ki z enim parametrom opiše učinke z napetostno sondo vnesene dekoherence na časovni potek toka skozi sistem. S tem dobim polnejšo sliko o vplivu dekoherence tako na statične kot dinamične lastnosti toka.

Poglavje 2

Ozadje

2.1 Osnovni pojmi v mezoskopskem transportu

V diplomskem delu obravnavam precej idealiziran sistem, ki pa je v različnih oblikah pogosto realiziran v laboratorijih po svetu. Za začetek bi tako predstavil nekaj pomembnejših pojmov iz sveta nanofizike.

Dvodimenzionalni elektronski plin

S pojmom *dvodimenzionalni elektronski plin*, pogosto (tudi v tem delu) označenim z angleško kratico *2DEG*, je tipično mišljen tanek sloj na stiku dveh različnih polprevodnikov v polprevodniški heterostrukturi. V mnogih odmevnejših eksperimentih je bila slednja kombinacija GaAs in AlGaAs: na primer pri odkritju kvantizirane prevodnosti balističnega *kvantnega točkovnega stika* [3].

Podobno kot na stiku med oksidom in polprevodnikom v silicijevih MOSFETih, kjer tudi lahko govorimo o dvodimenzionalnem elektronskem plinu, se tu elektronski energijski pasovi ukrivijo tako, da dno prevodnega pasu pade pod Fermijev nivo, ki mora biti v sredstvu v ravnovesju krajevno neodvisen. Shematično je potek pasov za oba primera prikazan na slikah 2.1.

GaAs-AlGaAs heterostrukturo naredi posebej primerno za implementacijo nanosistemov za nekaj razredov velikosti večja (nizkotemperaturna) mobilnost elektronov μ v primerjavi z 2DEG v MOSFETih [4]. Preprosta razlaga gre tako: GaAs ni dopiran, dopanti pa so nečistoče v mreži in tako centri sipanja. Večina eksperimentov v mezoskopski fiziki je tako opravljena pri zelo nizkih temperaturah, saj pri višjih ta prednost izgine; tam prevlada fononsko sipanje. Stik GaAs-AlGaAs je sicer tudi osnova tranzistorja HEMT (ang. High electron mobility transistor).

Dodatna prednost 2DEG za implementacijo nanostruktur je poleg visoke mobilnosti tudi majhna gostota elektronov. Njihova Fermijeva valovna dolžina je tako dovolj dolga, da se lahko na tej - mezoskopski - skali opazi pojave, ki so v tipičnih snoveh opazni šele na nekaj velikostnih razredov manjših razdaljah. Zaradi sorodnega razloga - elektroni se nahajajo zelo blizu dna prevodnega pasu - se v teoretični obdelavi 2DEG pogosto obravnava v približku efektivne mase [5].

Kvantna žica in kvantni točkovni stik

Za *kvantne žice* mora veljati, da so (kvazi) enodimenzionalne: njihova širina ne sme krepko presegati Fermijeve valovne dolžine za elektrone v sredstvu. Tako se v dveh

Slika 2.1: Pojav dvodimenzionalnega elektronskega plina zaradi ukrivljanja pasov na stiku različnih snovi v *podslika (a)*: silicijevem *MOSFETu* in *podslika (b)*: AlGaAs-GaAs heterostrukturi. Povzeto po ref. [6, strani 5,10].

dimenzijah pojavijo vezana stanja, v tretji pa obstaja približna translacijska simetrija. V mojem modelu obravnavam žice kot popolnoma idealne - enodimenzionalne.

V dvodimenzionalnem elektronskem plinu se jih tipično ustvari s privedbo napetosti na vzporedni, razsežni elektrodi na površini nad plinom. Ti v plinu pod seboj nato ustvarita omejevalni potencial.

V primeru, kjer je tudi dolžina žice precej manjša od elektronske elastične povprečne proste poti, govorimo o *kvantnem točkovnem stiku*. Zanj se lahko doseže, da elektroni čezenj prehajajo brez sipanj, kar se poimenuje *balističen* transport. Tudi v tem primeru pa prevodnost ni neomejena; izkaže se, da je končna in kvantizirana v enotah $2e_0^2/h$, kjer je e_0 osnovni naboj in h Planckova konstanta [3]. Upor takšnih struktur je nelokalen in se ga tipično pripiše kontaktom [4].

Sirino stika (oziroma jakost njegovega potenciala) kontrolirata površinski elektrodi. Če je ta dovolj majhna, prevodnost ne doseže vrednosti enega kvanta in lahko govorimo o *tunelskem režimu* stika.

Kvantna pika

Z ustrezno konfiguracijo površinskih elektrod je mogoče elektrone zamejiti na območje z dimenzijami, primerljivimi z njihovo Fermijevo valovno dolžino. Takšne strukture, imenovane *kvantne pike*, se zaradi kvantizacije v vseh treh smereh pogosto primerja z atomi [7]. Za realizacije v 2DEG je dovolj, da se velikost pike omeji na red 100 nm, kar da energijsko skalo kvantnih nivojev reda 0.1 meV. Atomsko obnašanje na tako majhni energijski skali pa je eksperimentalno precej zanimivo.

Dodati velja, da potencial na piki kontrolira tudi zasedenost stanj na njej, kar prinese dodatne efekte na račun medelektronske interakcije. V mojem modelu sem piko precej idealiziral in te zanemaril.

Primer kvantne pike, ustvarjene s površinskimi elektrodami v 2DEG, je prikazan na sliki 2.2.

Slika 2.2: Fotografija mezoskopskega sistema, posneta z mikroskopom na atomsko silo. Sistem je sestavljen iz kvantne pike povezane z dvema kvantnima točkovnima stikoma in je realiziran v 2DEG, ki leži pod vidnimi elektrodami. Para elektrod $Q_{1,2}$ -F uravnavata širino kvantnih točkovnih stikov, elektroda C pa lokalni potencial na piki, ki se tvori pod praznim območjem med elektrodami. "Prazni" območji v 2DEGlevo in desno imata funkcijo rezervoarjev. Slika je povzeta po ref. [7, stran 274].

Ostale implementacije nanosistemov

Pojmi kvantna žica, kvantni točkovni stik in kvantna pika so definirani neodvisno od snovi, tako da gre omeniti še nekaj implementacij poleg 2DEG v polprevodniški heterostrukturi. Tehnologija dandanes omogoča opazovanje električnega toka čez eno samo molekulo, "ujeto" med (tipično zlata) konektorja. Preučevane molekule so pogosto organske aromatske in se obnašajo podobno kvantnim točkovnim stikom oziroma pikam. [8]

Pogosta je tudi uporaba *ogljikovih nanocevk*. Te sestavljajo tanki grafenski sloji, združeni po robu sami s seboj v cilinder. Od geometrije spoja robov plasti je odvisna geometrija recipročnega prostora in s tem obnašanje energijskih pasov: ogljikove nanocevke se lahko obnašajo bodisi kot polprevodniki bodisi kot kovine.

2.2 Stacionarna Schrödingerjeva enačba v idealni kvantni žici

Valovni vektorji elektronov, ki tvorijo 2DEG, se nahajajo blizu dna prevodnega pasu. Zato se jih lahko obravnava v *približku efektivne mase* [9]. V njem se efekte na račun mrežnega potenciala "pospravi" v tenzor efektivne mase, dinamiko pa opiše Schrödingerjeva enačba prostih elektronov, upoštevajoč "popravljeno" maso. V mojem primeru obravnavam idealno kvantno žico. To pomeni, da so energijski pasovi, ki nastanejo na račun kvantizacije v prečni smeri, tako narazen, da je elektronom praktično na voljo le najnižji; na žico pa se lahko gleda kot na enodimenzionalno. Tako imam namesto tenzorja opravka s skalarjem *efektivne mase elektronov* m^{*}.

Ker nas zanima oblika energijskih pasov, iščemo rešitve stacionarne Schrödinger-

jeve enačbe:

$$\left[\frac{-\hbar^2}{2m^*}\frac{\mathrm{d}^2}{\mathrm{d}x^2} + U(x)\right]\psi(x) = E\psi(x),\tag{2.1}$$

kjer je \hbar reducirana Planckova konstanta in U(x) poljuben potencial (efekte mrežnega upošteva že efektivna masa m^*).

V numerični obdelavi valovno funkcijo ψ tipično slej ali prej diskretiziramo v prostoru. Tudi v analitični obravnavi je to pogosto prvi korak v reševanju problemov te vrste (prim. ref. [4, 10]), kar lahko v takšnih sistemih upravičimo, če je razdalja med mesti diskretizacije *a* precej manjša od Fermijeve valovne dolžine. Če drugi odvod aproksimiram s centralno diferenco:

$$\lim_{a \to 0} \frac{\psi(x+a) - 2\psi(x) + \psi(x-a)}{a^2} = \psi''(x),$$

to za Schrödingerjevo enačbo 2.1 pomeni:

$$\left(2\frac{\hbar^2}{2m^*a^2} + U_n\right)\psi_n - \frac{\hbar^2}{2m^*a^2}\psi_{n-1} - \frac{\hbar^2}{2m^*a^2}\psi_{n+1} = E\,\psi_n,$$

kjer sem zaporedne vrednosti funkcij označil z indeksom n. Za konstanten potencial v žici $U_n = U$ upoštevam še translacijsko simetrijo:

$$\psi_{n+1} = \psi_n \, e^{ika}.\tag{2.2}$$

Z uvedbo oznak
e $\gamma=\frac{\hbar^2}{2m^*a^2}$ se Schrödingerjeva enačba zapiše kot:

$$(2\gamma + U)\psi_n - \gamma\psi_{n-1} - \gamma\psi_{n+1} = E\psi_n, \qquad (2.3)$$

oziroma ob upoštevanju translacijske simetrije:

$$(2\gamma + U)\psi_n - \gamma e^{ika}\psi_n - \gamma e^{-ika}\psi_n = E\psi_n.$$
(2.4)

Pripadajoča disperzijska relacija v idealni kvantni žici je:

$$E(k) = U + 2\gamma - 2\gamma \cos(ka). \tag{2.5}$$

To je natanko disperzijska relacija, ki se jo dobi v približku tesne vezi (v eni dimenziji) z uporabo le s-orbital in upoštevanjem prekrivanja samo najbližjih sosedov, če razdaljo diskretizacije a enačimo z medmrežno razdaljo in ustrezno nastavimo ničlo energije [9]. V literaturi s področja kvantnega transporta se zato pogosto oboje imenuje približek tesne vezi in uporablja enake oznake (tj. γ), čeprav se v primeru diskretizacije ne apelira na kakršnokoli povezavo z atomskimi orbitalami [4].

Zanimivo je dodati, da diskretizacijska dolžina a v končni obliki Schrödingerjeve enačbe nastopa le v parametru γ z enotami energije, kjer je odločilen njen produkt z efektivno maso elektronov m^*a^2 . V praksi to za (tudi) moj model pomeni, da rešitve tega opišejo celo vrsto eksperimentalnih sistemov, katerih dimenzije (in posledično tipične energije) se lahko med seboj razlikujejo za več redov velikosti.

2.3 Tok skozi neskončno verigo

V jeziku analogije med diskretizacijo Schrödingerjeve enačbe in približkom tesne se o enodimenzionalni kvantni žici govori kot o neskončni verigi atomov, čeprav ne gre pozabiti, da gre za analogijo. Sedaj želim pogledati, kaj lahko povem o gostoti električnega toka skozi takšno verigo.

Gostota toka je sorazmerna gostoti n, naboju $-e_0$ in hitrosti v njegovih nosilcev (v tem primeru elektronov):

$$\boldsymbol{j} = -n \, \boldsymbol{e}_0 \, \boldsymbol{v}. \tag{2.6}$$

Hitrost elektronov lahko dobimo iz njihove disperzijske relacije kot $v = \frac{1}{\hbar} \frac{dE(k)}{dk}$. Naboj posameznega je seveda osnovni naboj $-e_0$, tako da ostane, da ocenimo njihovo gostoto n.

V primeru, da spin zanemarimo, je število elektronov zaradi *Paulijevega izključitvenega načela* enako številu njihovih zasedenih stanj. V verigi privzamem *periodične robne pogoje*, kar za število mest na verigi N prinese predpis za kvantizacijo valovnega števila k:

$$k_i = \frac{2\pi}{N}i, \qquad i \in \{-N/2, ..., 0, ...N/2\},$$
(2.7)

kjer sem za enoto dolžine vzel razdaljo med mesti: a = 1.

Za velike N postane kvantizacija vedno manj očitna in lahko zgornjo zvezo obravnavamo diferencialno: "prirastek" števila stanj di pri povečanju dk je enak:

$$\frac{di}{dk} = \frac{N}{2\pi}$$

Če to zvezo delimo z "volumnom" L = N, dobimo gostoto stanj v prostoru valovnih števil, ki jo lahko izrazimo kot funkcijo energije:

$$g_{1D}(E) = \frac{1}{L} \frac{di}{dk} \frac{dk}{dE} = \frac{1}{2\pi} \frac{dk}{dE}.$$

Za nizke temperature $T \to 0$ so pod Fermijevo energijo zasedena vsa možna stanja: n(E) = g(E) in lahko izrazim gostoto toka pri energiji E:

$$j(E) = -e_0 n(E) v(E) = -e_0 \frac{1}{2\pi} \frac{dk}{dE} \frac{1}{\hbar} \frac{dE}{dk} = \frac{-e_0}{h}.$$
 (2.8)

Ker gre za enodimenzionalen primer, bom od sedaj trivialen integral po preseku $I = \int \mathbf{j} \cdot d\mathbf{S}$ že štel v količino j(E) in jo enačil z *energijsko gostoto toka* $\frac{dI}{dE}$. K izpeljavi gre še dodati, da se nisem skliceval na specifično obliko disperzije elektronov; konstantna energijska gostota toka je posledica enodimenzionalnosti sistema.

2.4 Formalizem Landauerja in Büttikerja

Recimo, da sedaj dve (pol)neskončni verigi atomov spojimo tako, da lahko še vedno na vsaki definiramo kemijski potencial μ , ki je v nizkotemperaturni limiti enak $\mu = E_F - e_0 U$. Z E_F sem označil Fermijevo energijo, U pa je električna napetost.

Točka spoja je lahko kvantna pika, zaenkrat pa igra le vlogo bariere, ki poruši translacijsko simetrijo. Ker za vodnika privzamemo, da sta neskončna, gostota toka (na stanje) pa je po prejšnjem podpoglavju omejena, je privzetek različnih potencialov smiseln. Dovolj stran od bariere - nečistoče bo majhen tok skozi njo praktično brez vpliva na potencial v vodniku.

V kolikor je slednji na obeh straneh enak, se bosta seveda tokova čez bariero v obe smeri natanko kompenzirala. Sedaj obe strani označim z indeksoma 0 - leva in 1 - desna. Če v npr. levi verigi vzpostavimo napetost $U_0 \neq 0$, bo ta tam naredila zasedena stanja za e_0U_0 različna od Fermijeve energije. Ker kemijski potencial v desni verigi pustimo na $\mu_1 = E_F$, ta stanja nimajo "desnega" partnerja in bodo prispevala k neto električnemu toku.

Za celoten (neto) tok I lahko uporabimo energijsko gostoto toka (v eni dimenziji) iz enačbe 2.8:

$$I = \int_{\mu_1}^{\mu_0} j(E) dE = \frac{-e_0}{h} \ (\mu_0 - \mu_1) = \frac{e_0^2}{h} U.$$
 (2.9)

Ta formula je najosnovnejša oblika *Landauerjeve formule*, kjer na elektrone bariera, s katero smo ločili območja različnih μ , pri prehodu popolnoma nič ne vpliva; z drugo besedo je transport čez njo *balističen*. Če s *prevodnostjo* $G = R^{-1}$ zapišemo *Ohmov zakon* v inverzni obliki: I = GU in tok pomnožimo s faktorjem 2 za spin (gostota stanj se z upoštevanjem tega podvoji), dobimo v podpoglavju 2.1 večkrat omenjeni eksperimentalno opažen *kvant prevodnosti* balističnega prevodnika $G_0 = \frac{2e_0^2}{h}$, prikazan tudi na sliki 2.3.

V praksi je balističnost pogosto le idealna limita; tok skozi bariero karakterizira njena transmisijska verjetnost oz. *prepustnost* T, ki je verjetnost, da bo elektron prešel bariero. Z upoštevanjem te se lahko prevodnost popravi kot:

$$G = G_0 T = \frac{2e_0^2}{h} T,$$
 (2.10)

kar da celotni tok:

$$I = \frac{2e_0^2}{h} T U.$$
 (2.11)

Slika 2.3: Kvantizacija prevodnosti v balističnem kvantnem točkovnem stiku. Na osi x je prikazana napetost na elektrodi, s katero se uravnava njegovo širino. Limiti enodimenzionalne verige ustreza najnižja "polica" v prevodnosti za napetost U < -2 V. Povzeto po ref. [5, stran 176], izvirno iz ref. [3].

Slika 2.3 prikazuje rezultat merjenja prevodnosti za točkovni stik končne širine, tako da gre omeniti še splošno obliko Landauerjeve formule.

V primeru, da je kvantna žica končne širine in je elektronom v prečni smeri na voljo več nivojev se v Landauerjevem formalizmu rezultat za prevodnost enodimenzionalne verige (enačba 2.10) preprosto pomnoži s številom zasedenih prečnih nivojev oziroma kanalov - M. Na sliki 2.3 je opaziti efekt manjšanja energijske razdalje med temi pasovi z manjšanjem jakosti zamejitvenega potenciala: elektronom postopoma postajajo na voljo dodatni kanali. Ti se obnašajo popolnoma enako kot primer z enim kanalom, tako da se dobi stopnice v prevodnosti enakomerne velikosti.

Dodatno modifikacijo je potrebno storiti, ko se upošteva neničelno temperaturo. V energijski gostoti elektronov je potrebno upoštevati verjetnost za zasedenost nivoja: n(E) = g(E)f(E), kjer je f(E) Fermi-Diracova porazdelitev. Ta je bila do sedaj stopničaste oblike in sem jo že upošteval, ko sem v enačbi 2.9 postavil meje integrala. Za nezanemarljive temperature pa so zasedena tudi stanja nad potencialoma μ_0 oz. μ_1 , tako da gredo meje integracije čez celoten energijski interval. Polna oblika Landauerjeve formule je tako:

$$I = \frac{-2e_0}{h} \int T(E)M(E) \left[f_0(E) - f_1(E)\right] dE.$$
 (2.12)

Zaradi potencialno širokega energijskega intervala je potrebno upoštevati, da so v različnih območjih slednjega lahko na voljo različna števila pasov M = M(E).

V mojem problemu se držim nizkotemperaturne limite enodimenzionalnih verig - M = 1. Kljub temu pa za prepustnost T nikakor ne morem trditi, da je konstantna skozi širši energijski interval. Preučujem namreč sisteme z močno *resonančno* karakteristiko tuneliranja, tako da velja T = T(E) in je posledično potrebno uporabiti integralsko obliko *Landauerjeve formule*.

2.4.1 Büttikerjeva razširitev za več terminalov

Landauerjevo formulo je M. Büttiker razširil na primer, ko imamo opravka z vozliščem vodnikov, stikajočih se v skupni točki, ki je lahko npr. zopet kvantna pika [1]. Med vodniki so nekateri nosilci neto toka, medtem ko drugi lahko igrajo vlogo napetostnih sond; želja je, da bi formalizem opisal poljubno eksperimentalno postavitev. Zanima nas neto tok iz vodnika, ki ga označimo z indeksom p. Vodnikov, ki se jih v literaturi pogosto imenuje terminali, a priori ne moremo ločiti po namenu, tako da Büttiker tok opiše z neposredno razširjeno Landauerjevo formulo:

$$I_p = \sum_{\text{ostali vodniki}\,q} G_{qp} U_p - G_{pq} U_q, \,^1$$
(2.13)

kjer se v elementih matrike prevodnosti skriva medterminalna prepustnost $G_{pq} = \frac{2e_0^2}{h} T_{p \leftarrow q}$.²

Enačbo 2.13 lahko še poenostavimo z uporabo Kirchoffovega zakona: $\sum_{q} G_{qp} = \sum_{q} G_{pq}$ [4]. Tako dobimo:

$$I_p = \sum_{q} G_{pq} \left[U_p - U_q \right].$$
 (2.14)

¹Kot poprej je glede na razmere potrebno uporabiti integralsko obliko.

²V kolikor imamo opravka z več kanali med vodnikoma lahko velja: $T_{p\leftarrow q} > 1$.

2.5 Kvantna (de)koherenca

Pojem koherenca srečamo tako v optiki kot kvantni mehaniki, tipično pa je definiran glede na obravnavan problem. Popolna koherenca pomeni, da je fazna razlika valovanja $\Delta \varphi = \varphi(\mathbf{r}, t) - \varphi(\mathbf{r}', t')$ odvisna le od premika v koordinatah $\Delta \varphi = \Delta \varphi(\mathbf{r} - \mathbf{r}', t - t')$. Takšno valovanje lahko zapišemo kot ravni val: $\propto e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$ s točno določenim valovnim vektorjem \mathbf{k} in frekvenco ω . V praksi se temu približa laserska svetloba, kjer so vrednosti valovnega vektorja ozko razporejene okoli neke vrednosti \mathbf{k}_0 . Glede na ožino porazdelitve se tako govori o dobri prostorski koherenci; približevanje porazdelitve po frekvencah funkciji delta $\delta(\omega - \omega_0)$ ekvivalentno pomeni vedno boljšo časovno koherenco, obe pa sta povezani preko disperzijske relacije $\omega(\mathbf{k})$.

Druga definicija je, da imamo opravka s koherenco v kolikor so interferenčni pojavi relevantni za končno meritev. Kvantno mehansko to pomeni, da ne moremo zanemariti *amplitud* valovnih funkcij ψ ter operirati kar z njihovimi *verjetnostnimi porazdelitvami* $|\psi|^2$.

V primeru kvazi-enodimezionalnih nanostruktur pri zelo nizkih temperaturah in za majhne napetostne razlike tok resnično prevaja le nekaj stanj z vsakemu pripadajočim valovnim vektorjem \mathbf{k} okoli Fermijeve energije (prim. argument za izpeljavo Landauerjeve formule - enačbe 2.9). Analogija s koherentnim laserjem je tako precej na mestu, upoštevati pa je potrebno, da so elektroni fermioni, kar za razliko od laserja omeji "spektralno moč" na $\frac{2e_0}{h}$ (prim. enačba 2.8 z upoštevanjem spinske degeneracije) [4].

Kvantna dekoherenca je mehanizem, s katerim opišemo uničenje kvantno mehanskih interferenčnih pojavov s strani interakcije z okoljem in postopen prehod v klasično limito. Gledano s tega vidika je kvantno mehanska meritev, kjer izmerimo le posamično lastno stanje operatorja in ne njihovih superpozicij, primer, kjer se ta prehod izpelje do konca [11].

V mezoskopskih sistemih so prevodni elektroni koherentni na časovni skali časa fazne koherence τ_{φ} , kar implicira dolžino fazne koherence l_{φ} . Ti količini sta merilo jakosti interakcije z okoljem: po času τ_{φ} se vsa fazna informacija dokončno izgubi. Ob tem času je tako faza elektrona naključna glede na stanje ob $t - \tau_{\varphi}$ [5, 7].

Pogosto se uporablja tudi izraz čas oz. dolžina *fazne relaksacije*. S tem se pripomore h konceptualni jasnosti, saj se, kot omenjeno, v optiki s pojmom koherenčni čas opiše, kako blizu popolni koherenci se valovni paket nahaja [4]. Tukaj bi želel izpostaviti, da je v tem kontekstu to lastnost valovanja samega in ne interakcije z okoljem. V nasprotnem primeru pa *kvantna* dekoherenca uniči koherentnost (tudi) ravnega vala v povprečnem času τ_{φ} .

Poleg visoke elektronske mobilnosti se v dvodimenzionalnih elektronskih plinih pri nizkih temperaturah doseže tudi veliko dolžino fazne koherence l_{φ} . To omogoči praktično izdelavo nanostruktur, kjer je največja dimenzija še vedno dovolj majhna, da se eksperimentalno zazna pojave kot je npr. *pojav Aharonova in Bohma* [5].

Pri tem se opazuje tok skozi oziroma prepustnost mezoskopskega prevodnika v obliki obroča, ustvarjenega v plinu na enak način kot na primer kvantna pika. V prisotnosti magnetnega polja bo prepustnost T med dvema terminaloma priključenima na takšen obroč oscilirala s spreminjajočim se magnetnim poljem. Izkaže se, da je relevantna količina magnetni pretok Φ , ki ga zaobjameta obe možni (klasični) poti

elektrona skozi obroč. Perioda oscilacij je kvant magnetnega pretoka $\phi_0 = \frac{h}{|e_0|}$.

Teoretično se pri obravnavi mehanizma kvantne dekoherence uporablja neke vrste dualnost: dekoherenco lahko opišemo kot posledico sklopitve sistema s toplotnimi rezervoarji - okolico, lahko pa tudi kot posledico naključnih fluktuacij v lokalnem potencialu oz. polju, s čimer se modelira interakcijo med elektroni, sipanje slednjih na fononih ipd [5].

V diplomski nalogi izkoristim to konceptualno dualnost: sipalne procese, ki so (skoraj) elastični in tako večinoma le uničujejo elektronsko koherenco, je mogoče simulirati s koherentnim transportom skozi sipalec, ki smo mu dodali *napetostno sondo*. Ta ni nič drugega kot polneskončen, homogen vodnik brez neto električnega toka. Tak rezervoar bo selektrone, ki so vanj vstopili, ponovno "vbrizgal" v sistem ob naključnem času [4].

2.5.1 Koherenca in transmisija

Vplivi elektronske koherence v napravah, manjših od l_{φ} , niso omejeni le na pojave v prisotnosti magnetnega polja.

V podpoglavju 2.4 sem omenil, da tok skozi mezoskopski prevodnik oblikuje njegova prepustnost T(E). Kvantno mehansko se problem obravnava kot tuneliranje skozi potencialno bariero, ki jo predstavlja prevodnik. Proces opiše transmisijska amplituda t(E), ki predstavlja kompleksni faktor, s katerim se pomnoži amplituda vpadne valovne funkcije. Prepustnost - verjetnost, da se delec, ki vpada z ene strani znajde na drugi - pa je podana kot kvadrat njene absolutne vrednosti $T(E) = |t(E)|^2$.

Recimo, da nas zanima transmisija skozi dva zaporedna prevodnika z dimenzijami, precej manjšimi od l_{φ} . Posamičen prevodnik formalno opiše *sipalna matrika* S, ki poda odziv na vpadno valovanje poljubne oblike. V primeru preprostega prevodnika, povezanega z levim in desnim vodnikom, sta možni vpadni valovanji le z leve in desne. Če tukaj vodnika in njima pripadna valovanja označim z indeksoma L - levi in D - desni, lahko pripadajoči amplitudi vpadnih valovanj "pospravim" v vektor (a_L, a_D) , odbitih pa v (b_L, b_D) . Povezavo med obema poda sipalna matrika:

$$\begin{pmatrix} b_L \\ b_D \end{pmatrix} = \begin{pmatrix} r & t \\ t & r' = -r^* \frac{t}{t^*} \end{pmatrix} \begin{pmatrix} a_L \\ a_D \end{pmatrix}.$$
 (2.15)

Prva vrstica matrike vsebuje pričakovan odziv v levem vodniku: transmisijsko amplitudo t in amplitudo, povezano z obratnim izidom: refleksijsko amplitudo r. Odziv v desnem vodniku - drugo vrstico - pa za tako preprost prevodnik takoj dobimo iz dveh zahtev za lastnosti sipalnih matrik. V odsotnosti magnetnega polja morajo biti te invariantne na obrat časa: $S^T = S$, kar pomeni $t_{LD} = t_{DL}$. Refleksijska amplituda z desne r' pa je nato natanko določena z zahtevo po unitarnosti sipalne matrike: $S^{\dagger}S = I$, kar je posledica kontinuitetne enačbe za tok oz. Kirchoflovega zakona (prim. enačbi 2.13, 2.14).

Sedaj se osredotočim le na transmisijo z leve proti desni skozi dva zaporedna prevodnika, od katerih vsakemu pripadajo elementi sipalne matrike $t_{1,2}$ ipd. Zanima me, kakšno obliko bi imela "nadomestna" transmisijska amplituda za transmisijo skozi sistem obeh skupaj kot celote, ki jo označim z npr. t.

To lahko dobimo kot vsoto vseh možnih (Feynmanovih) poti delca skozi sistem dveh prevodnikov, ki se začnejo na levi in končajo na desni:

$$t = \underbrace{t_1 t_2}_{\text{neposreden prehod}} + \underbrace{t_1 r_2 r'_1 t_2}_{\text{enkratni odboj}} + \underbrace{t_1 r_2 r'_1 r_2 r'_1 t_2}_{\text{dvakratni odboj}} + \dots$$

Izraz ima obliko geometrijske vrste in konvergira v:

$$t = \frac{t_1 t_2}{1 - r_1' r_2},\tag{2.16}$$

saj so vse količine po velikosti manjše od 1. V koeficient r'_1 sem tu "pospravil" še fazni zamik e^{ikL} , ki ga elektron pridobi na dodatni poti L med prevodnikoma ob dvojnem odboju: $r'_1 \rightarrow r'_1 e^{ikL}$.

Prepustnost je v primeru koherence bistveno odvisna od te faze in faz obeh refleksijskih koeficientov samih:

$$T = |t|^2 = \frac{T_1 T_2}{1 - 2\sqrt{R_1 R_2} \cos(\theta) + R_1 R_2}, \qquad \theta = \arg(r_1') + \arg(r_2).$$
(2.17)

V primeru popolne dekoherence se na poti med prevodnikoma uniči vsa informacija o fazi. Še vedno pa lahko govorimo o verjetnostih za prehode elektronov iz leve na desno: v vsoti transmisijske *amplitude* nadomestimo z *verjetnostmi - prepustnostmi* [4]:

$$T = T_1 T_2 + T_1 R_2 R_1 T_2 + T_1 R_2 R_1 R_2 R_1 T_2 + \dots,$$

kar seveda limitira v:

$$T = \frac{T_1 T_2}{1 - R_1 R_2}.$$
(2.18)

V primeru popolne dekoherence izrazi začnejo pridobivati klasično obliko. Ker velja kontinuiteta toka, R = 1 - T, se enačba 2.18 lahko prepiše v:

$$\frac{1}{T} = -1 + \frac{1}{T_1} + \frac{1}{T_2}.$$
(2.19)

Prejšnji izraz lahko po Datta [4] predelamo tudi v obliko:

$$\frac{1-T}{T} = \frac{R}{T} = \frac{1-T_1}{T_1} + \frac{1-T_2}{T_2}$$

Iz prejšnje enačbe dobimo neposredno pravilo za nadomestni upor zaporedno vezanih upornikov s posamično upornostjo G_n^{-1} , če to asociiramo s količino $\frac{1-T_n}{T_n} = \frac{R_n}{T_n}$.

¹ⁿ Po drugi strani pa je po enačbi 2.10 prevodnost G v mezoskopski sliki sorazmerna prepustnosti $G = \frac{2e_0^2}{h}T$, kar nam da:

$$G_{\text{celotna}}^{-1} = \frac{h}{2e_0^2} \frac{1}{T} = G_c^{-1} + (G_1^{-1} + G_2^{-1}).$$

Količina $G_c^{-1} = \frac{h}{2e_0^2}$ je upornost balističnega prevodnika in se jo v literaturi označuje z imenom "upornost kontaktov" [4]. Ob upoštevanju te modifikacije tako

v primeru popolne dekoherence zopet dobimo klasično obnašanje.

V diplomskem delu se držim paradigme *resonančnega tuneliranja* neodvisnih elektronov, kjer se te v principu obravnava kot koherentne, edini vir dekoherence pa je napetostna sonda. Model postane manj verodostojen, ko se velikost vzorca poveča nad prej omenjeno dolžino fazne koherence, kjer tok dobro opiše klasična difuzija elektronov oziroma makroskopski zakoni.³

Natančnost korespondence med modelom in eksperimentalnim sistemi tako zavisi od fizikalnih karakteristik slednjih, kot so na primer povprečna prosta pot, dolžina fazne koherence, število stanj na kvantni piki ipd.

³Kombinacijo dolge dolžine fazne koherence l_{φ} , a pogostega elastičnega sipanja oz. kratke povprečne proste poti v primerjavi z dolžino vzorca se pozna pod imenom kvantna difuzija.

Poglavje 3 Formulacija problema

3.1 Opis sistema

Obravnavani sistem sestavljajo trije polneskončni, enodimenzionalni vodniki, povezani s kvantno piko. Eden od vodnikov služi kot napetostna sonda. Vodnike označujem z naslednjimi indeksi: 0-levi, 1-desni in 2-sonda.

Sistem je shematično prikazan na sliki 3.1, ki je narisana s pomočjo **pythonove** knjižnice **kwant** [12]. Ta ponuja rutine za preprosto definicijo in skiciranje sipalnih problemov v približku tesne vezi ter izračun nekaj njihovih osnovnih stacionarnih lastnosti.

Slika 3.1: Skica obravnavanega sistema kvantne pike sklopljene s tremi polneskončnimi vodniki in relevantni parametri. Pika je prikazana s črno barvo in ima od vodnikov različen potencial ϵ_0 . Poleg tega na njej, nasprotno kot v vodnikih, ne velja translacijska simetrija. Vodnik v vertikalni smeri služi kot napetostna sonda.

Za opis sistema uporabim štiri parametre: tri prekrivalne integrale γ , γ_0 , γ_2 ter lastno energijo pike ϵ_0 . ¹ Z γ označim konstantni prekrivalni integral med sosednjimi mesti v vodnikih, γ_0 sta prekrivalna integrala med tokovnima vodnikoma in piko, γ_2 pa je od prejšnjega načeloma različen integral med piko in napetostno sondo.

Problem obravnavam v brezdimenzijskih enotah, kjer velja $e_0 = 1$, $\hbar = 1$ in $k_B = 1$. V numeričnih rezultatih na enoto postavim tudi vrednost prekrivalnega

 $^{^1{\}rm Za}$ to torej privzamem, da ima na obravnavanem energijskem intervalu le en nivo.

integrala v vodnikih $\gamma = \frac{\hbar^2}{2m^*a^2} = 1$, kjer je m^* efektivna masa elektronov in *a* razdalja diskretizacije.

Za vrednosti ostalih prekrivalnih integralov vedno velja $\gamma_0, \gamma_2 < \gamma = 1$, da je še smiselno govoriti o resonančnem tuneliranju. Dodatno sem v vseh izpeljavah, pa tudi v numeričnih simulacijah, temperaturo postavil na absolutno ničlo.

3.1.1 Napetostna sonda

Napetostna sonda je v Büttikerjevem formalizmu (enačba 2.14) predstavljena kot terminal. Zaradi konsistentnosti jo bom v enačbah označeval kar z indeksom 2, ki sem ji ga dodelil v mojem sistemu; pripada pa ji vektor prepustnosti $T_{2,i}$. Po tem predpisu je v primeru energijsko neodvisnih prevodnosti G_q njena napetost z njimi obteženo povprečje ostalih:

$$U_2 = \frac{\sum_{q \neq 2} G_{2q} U_q}{\sum_{q \neq 2} G_{2q}}$$
(3.1)

V delu se poslužujem fenomenološkega modela za opis delno koherentnega transporta, ki ga je prvi predlagal M. Büttiker [1]. V njem transport skozi delno koherenten sistem opišemo s popolno koherentnim sipanjem na enakem sistemu, ki smo mu dodali (fiktivno) *Büttikerjevo sondo*. Razlog za veljavnost analogije je preprost: v kolikor je neto tok v sondo res vedno enak nič, potem se vsak v sondo vstopajoči elektron kompenzira z izhajajočim. Bistvena razlika pa je, da med njima ni nikakršne fazne korelacije, saj slednji vstopa iz rezervoarja. Z modelom se tako opiše procese, ki uničijo elektronsko fazo, ne pa tudi velikosti momenta. Delež nekoherentnega prispevka h toku je sorazmeren z lahkoto pobega (in vrnitve) elektronov v sondo, kar v približku tesne vezi ustreza prekrivalnemu integralu med sondo in sipalcem piko. Tega v mojem sistemu (prim. slika 3.1) označujem z γ_2 .

V numeričnih izračunih je mehanizem za zagotavljanje ničnega toka ustrezna napetost - kemijski potencial na sondi, kjer pa je treba poudariti, da enačba 3.1 poleg že omenjenih zadržkov - velja le za stacionarno stanje.

V mojem primeru, kjer imam opravka z le dvema tokovnima terminaloma in napetostno sondo, lahko pridemo do modifikacije prepustnosti T med dvema tokovnima vodnikoma iz osnovne oblike *Landauerjeve formule* (enačba 2.12), ki jo "popravimo" za efekt sonde - nekoherentnega transporta: [4]

$$T_{10}^{\text{eff}} = T_{10} + \frac{T_{12} T_{20}}{T_{20} + T_{21}}, ^{2}$$
(3.2)

Prvi člen na desni strani enačbe 3.2 - T_{10} je neposredna - koherentna prepustnost v tri-terminalnem sistemu in seveda ni enaka koherentni za dvo-terminalni sistem. Drugi člen je prispevek na račun nekoherentnega toka, do katerega se pride, ko se iz Büttikerjeve formule (enačba 2.14) izpostavi člene na račun sonde in zahteva, da je tok - integral energijske gostote toka - vanjo enak nič:

$$\int j_2(E) \, dE = 0. \tag{3.3}$$

 $^{^2 {\}rm Ob}$ odsotnosti magnetnega polja velja $T_{pq} = T_{qp},$ kot sem omenil pri definiciji sipalne matrike v podpoglavju 2.5.1.

Brez poznavanja mikroskopskega mehanizma dekoherence o sami vrednosti $j_2(E)$ pri določeni energiji vnaprej ne vemo kaj dosti. Če tok obravnavamo kot *nekoherenten*, a popolnoma *elastičen*, se $j_2(E)$ postavi na nič: $j_2 \equiv 0$.

Izraz za *efektivno prepustnost* T^{eff} med obema "tokovnima" terminaloma v mojem primeru (enačba 3.2) je možno razumeti, če se postavimo v limito stacionarnih $T_{pq} \sim \text{konst.}$ in sistem nadomestimo z analognim električnim vezjem, prikazanim na sliki 3.2.

Slika 3.2: Shematična predstavitev sistema s slike 3.1 kot električnega vezja. Analogija je primerna za stacionarno stanje v nizkotemperaturni limiti s približno konstantnimi prepustnostmi. Energijska odvisnost slednjih je namreč mikroskopska lastnost in nima analogije za makroskopske upornike z $R \propto T^{-1}$.

Za nadomestni "upor" $(T_{10}^{\text{eff}})^{-1}$ za to vezje velja:

$$\frac{1}{(T_{10}^{\text{eff}})^{-1}} = \frac{1}{T_{10}^{-1}} + \frac{1}{(T_{20}^{-1} + T_{21}^{-1})} = T_{10} + \frac{T_{20}T_{21}}{T_{20} + T_{21}},$$

kar je zopet izraz za efektivno prepustnost. V naslednjem poglavju bom prikazal, da (za razliko od klasičnih uporov) posamični T niso neodvisni, saj se jih pridobi z reševanjem enotnega sipalnega problema. To je dodatna ilustracija kvantne narave problema.

3.2 Transmisija skozi piko v približku tesne vezi

Sedaj želim uporabiti enačbe tesne vezi, da poiščem stacionarni rešitvi sistema. To najprej storim za odklopljeno ($\gamma_2 = 0$) in nato za priklopljeno sondo. Dobljene prepustnosti v Landauerjevem formalizmu nato napovejo stacionarne vrednosti električnega toka.

Nehomogenost sistema upoštevam tako, da kvantni piki pripišem lastno stanje Ψ_0 in energijo ϵ_0 , ki se razlikujeta od stanj (na piki ni translacijske simetrije) in energij v vodnikih. Takšna obravnava transmisije preko nečistoče - kvantne pike v približku tesne vezi je primer uporabe Andersonovega modela nečistoče brez interakcijskih členov [13].

3.2.1 Pika, povezana s polneskončnima vodnikoma

Zvezo med sosednjimi mesti v vodnikih (enačba 2.3) sem predstavil pri izpeljavi približka tesne vezi v vodnikih. Dodatno jo lahko poenostavim, če ničlo energije v sistemu postavim v $(2\gamma + U)$ in na levi izgubim "diagonalni" člen:

$$-\gamma \psi_{n-1} - \gamma \psi_{n+1} = E \psi_n. \tag{3.4}$$

Pripadajoča disperzijska relacija je:

$$E(k) = -2\gamma \cos(ka), \tag{3.5}$$

energijski pas pa se tako nahaja na intervalu $[-2\gamma, 2\gamma]$.

Celoten sistem razdelim na tri območja, ki jih indeksiram z n, za nastavek rešitve v vodnikih pa vzamem normiran val, ki vpada z leve:

$$\Psi = \begin{cases} 1 e^{ikna} + re^{-ikna} & n < 0 \\ \Psi_0 & n = 0 \\ t e^{ikna} & n > 0 \end{cases}$$
(3.6)

Oblika Schrödingerjeve enačbe okoli pike n = 0 je tako:

$$E \psi_{n=1} = -\gamma \psi_{n=2} - \gamma_0 \Psi_0$$

$$E \Psi_0 = \epsilon_0 \Psi_0 - \gamma_0 \psi_{n=1} - \gamma_0 \psi_{n=-1}$$

$$E \psi_{n=-1} = -\gamma \psi_{n=-2} - \gamma_0 \Psi_0$$
(3.7)

V enačbah 3.7 imam tri neznanke: Ψ_0, r in t. Prvi dve lahko eliminiram, kar prilagam v dodatku A.1, končna vrednost za *transmisijsko amplitudo t* pa je:

$$t(E) = \frac{2i \gamma_0^2 / \gamma \sin(ka)}{(E - \epsilon_0) + 2 \gamma_0^2 / \gamma e^{ika}} -$$
(3.8)

To ob uvedbi spremenljivke resonančne širine $\Gamma = \frac{4\gamma_0^2}{\gamma}$ da prepustnost $T = |t|^2$:

$$T(E) = \frac{(\frac{1}{2}\Gamma)^2 \sin^2(ka)}{(E - \epsilon_0)^2 + (\frac{1}{2}\Gamma)^2 + \Gamma(E - \epsilon_0)\cos(ka)}.$$
 (3.9)

Eliminacija valovnega števila z uporabo disperzijske relacije da:

$$T(E) = \frac{(1 - (\frac{E}{2\gamma})^2)(\frac{1}{2}\Gamma)^2}{(E - \epsilon_0)^2 + (\frac{1}{2}\Gamma)^2 - (\frac{E}{2\gamma})\Gamma(E - \epsilon_0)}.$$
 (3.10)

V bližini resonance $|E \sim \epsilon_0| \ll \gamma$ je ta izraz poznan kot *Lorentzova* oz. *Breit-Wignerjeva* funkcija. Graf funkcije za različne vrednosti resonančne širine $\Gamma \propto \gamma_0^2/\gamma$ je prikazan na sliki 3.3.

Slika 3.3: Prepustnost T za piko brez sonde (enačba 3.10) v enotah prekrivalnega integrala v vodnikih $\gamma = 1$ in z lastno vrednostjo potenciala na piki ϵ_0 postavljeno na 0. Vrednosti resonančne širine Γ so generirane iz enakomerno razporejenih vrednosti prekrivalnih integralov $\gamma_0 = 0...0.1...1$.

3.2.2 Dodana napetostna sonda

Sedaj sistemu priključim z γ_2 povezano napetostno sondo. Ker je γ_2 v splošnem različna od γ_0 , je potrebno ločiti med transmisijsko amplitudo v desni vodnik: t_{10} in v dodatno elektrodo - napetostno sondo: t_{20} .³ Mesta v sondi indeksiram z novim indeksom m = 0, 1...; še vedno pa iščem rešitev, ki vpada z leve:

$$\Psi = \begin{cases} 1 e^{ikna} + re^{-ikna} & n < 0 \\ \Psi_0 & n, m = 0 \\ t_{10} e^{ikna} & n > 0 \\ t_{20} e^{ikma} & m > 0 \end{cases}$$
(3.11)

Sistem enačb okoli pike je dimenzije 4×4 in ga rešujem za t_{10} : ⁴

$$E\Psi_{0} = \epsilon_{0}\Psi_{0} - \gamma_{0}\psi_{n=1} - \gamma_{0}\psi_{n=-1} - \gamma_{2}\psi_{m=1}$$

$$E\psi_{n=1} = -\gamma\psi_{n=2} - \gamma_{0}\Psi_{0}$$

$$E\psi_{n=-1} = -\gamma\psi_{n=-2} - \gamma_{0}\Psi_{0}$$

$$E\psi_{m=1} = -\gamma\psi_{m=2} - \gamma_{2}\Psi_{0}$$
(3.12)

Postopek reševanja sistema je priložen v dodatku A.2. Za razmerje transmisijskih amplitud pričakovano dobim naslednjo zvezo:

$$t_{20} = \frac{\gamma_2}{\gamma_0} t_{10}. \tag{3.13}$$

³Za indeks transmisijskih amplitud kot poprej velja konvencija $t_{10} = t_{0 \to 1}$.

 $^{^4\}mathrm{S}~\psi_n$ oz. ψ_m sem označil nastavke rešitve v vodnikih.

Končni izraz za transmisijsko amplitudo t_{10} pa je:

$$t_{10} = \frac{2i\gamma_0^2/\gamma \sin(ka)}{(E - \epsilon_0) + {}^{(2\gamma_0^2 + \gamma_2^2)}/\gamma e^{ika}}.$$
(3.14)

Tu definiram dva parametra širine: prvi je poznan iz prejšnjega podpoglavja $\Gamma = \frac{4\gamma_0^2}{\gamma}$, drugega pa dobim na račun sonde $\Gamma_2 = \frac{2\gamma_2^2}{\gamma}$. Za prepustnost med levim in desnim vodnikom T_{10} dobim:

$$T_{10} = \frac{(\frac{1}{2}\Gamma)^2 \sin^2(ka)}{(E - \epsilon_0)^2 + (\frac{1}{2}(\Gamma + \Gamma_2))^2 + (\Gamma + \Gamma_2)(E - \epsilon_0) \cos(ka)}.$$
 (3.15)

Zopet lahko vstavim disperzijsko relacijo in eliminiram k, kar da:

$$T_{10}(E) = \frac{\left(1 - \left(\frac{E}{2\gamma}\right)^2\right) (\frac{1}{2}\Gamma)^2}{(E - \epsilon_0)^2 + \left(\frac{1}{2}(\Gamma + \Gamma_2)\right)^2 - \left(\frac{E}{2\gamma}\right) (E - \epsilon_0) (\Gamma + \Gamma_2)}.$$
 (3.16)

To je torej verjetnost za koherentno transmisijo iz levega v desni vodnik. Za različne vrednosti Γ_2 je prikazana na sliki 3.4 na strani 31.

3.2.3 Oblika prepustnosti v bližini resonance

Če se osredotočim na bližino resonance in obe strani ulomka delim z $(\frac{1}{2}\Gamma)^2$, dobim izraz oblike:

$$T_{10}(E)|_{E\approx\epsilon_0\ll\gamma} = \left[\frac{(E-\epsilon_0)^2}{(\frac{1}{2}\Gamma)^2} + \frac{(\Gamma+\Gamma_2)^2}{\Gamma^2}\right]^{-1}.$$
 (3.17)

Razlika od Lorentzove porazdelitve $f(x, x_0, \gamma) = (\frac{1}{\pi\gamma}) [1 + (x - x_0)^2/\gamma^2]^{-1}$, ki do faktorja normalizacije $\frac{1}{\pi\gamma}$ v okolici resonance opiše transmisijo čez piko brez sonde, je večja, bolj kot parameter $(\Gamma + \Gamma_2)^2/\Gamma^2$ odstopa od 1. Primerjava z Lorentzovo funkcijo tudi objasni vlogo energije pike ϵ_0 , ki igra vlogo parametra x_0 in premika lokacijo vrha resonance.

Integral nenormirane Lorentzove funkcije je enak $\frac{\pi}{2}\Gamma$, integral aproksimacije prepustnosti T_{10} v bližini resonance - enačba 3.17 - pa znaša:

$$\int_{-\infty}^{\infty} T_{10}(E)|_{E\approx\epsilon_0} dE = \frac{\Gamma}{\Gamma+\Gamma_2} \frac{\pi}{2} \Gamma < \frac{\pi}{2} \Gamma.$$
 (3.18)

V formalizmu Landauerja in Büttikerja je stacionarni električni tok v nizkotemperaturni limiti proporcionalen integralu prepustnosti preko intervala, ki ga omejujeta kemijska potenciala. Prejšnji izraz tako pove, da prisotnost sonde zmanjša koherentni delež toka, in sicer v primeru velikih napetostnih razlik, ki pokrijejo celotno funkcijo prepustnosti, približno za faktor $\frac{\Gamma}{\Gamma+\Gamma_2}$. Celotni tok bo sestavljen

⁵Če namesto aproksimacije v bližini resonance upoštevam celotno obliko prepustnosti za sistem brez sonde (enačba 3.10), dobim na desni strani neenakosti popravek 2. reda v $\Gamma: -(\frac{1}{2} - \frac{\pi}{8})\Gamma^2$

Slika 3.4: Prepustnosti T_{10} za sistem pike z vodnikoma in dodano napetostno sondo (enačba 3.16) v enotah $\gamma = 1$ in energijo na piki na sredi pasu: $\epsilon_0 = 0$. Vsak graf prikazuje prepustnosti za različne vrednosti *resonančne širine* vodnikov Γ , prikazane v tabeli pod sliko; vrednost *resonančne širine sonde* Γ_2 pa je konstantna in prikazana v naslovih. Večanje vrednosti prekrivalnega integrala med piko in sondo γ_2 oziroma posledično $\Gamma_2 = 2\gamma_2^2/\gamma$ ima v primerjavi z resonančno krivuljo za sistem brez sonde (slika 3.3) dva učinka: maksimum se opazno zniža, hkrati pa se krivulja precej razširi (prim. ref. [14]).

tako iz koherentnega kot nekoherentnega prispevka. *Efektivno prepustnost*, s katero opišemo transmisijo v prisotnosti sonde, dobimo po enačbi 3.2:

$$T_{10}^{\text{eff}} = T_{10} + \frac{T_{02} T_{21}}{T_{02} + T_{12}} = T_{10} + \frac{1}{2} T_{20} = T_{10} + \frac{\Gamma_2}{\Gamma} T_{10} = T_{10} \left(1 + \frac{\Gamma_2}{\Gamma}\right) = T_{10} \left(\frac{\Gamma + \Gamma_2}{\Gamma}\right).$$
(3.19)

⁶Zaradi preglednosti sem izpustil eksplicitno energijsko odvisnost: T = T(E). Za razmerje

Integral prepustnosti preko energijskega pasu - enačba 3.18 - je v mejah uporabnosti aproksimacije z Lorentzovo funkcijo tako enak za odklopljeno in priklopljeno sondo, če v drugem primeru z efektivno prepustnostjo upoštevamo nekoherentni del toka. To pomeni, da bo za pike, ki so slabo sklopljene s tokovnima vodnikoma ($\Gamma \ll \gamma$) za dovolj velike napetostne razlike stacionarni, nizkotemperaturni električni tok ekvivalenten ob priključeni in izključeni sondi, saj v tem primeru dobro drži Lorentzova aproksimacija iz enačbe 3.17.

Nasprotno v numeričnem delu naloge večinoma operiram z majhnimi napetostnimi razlikami reda $U \sim 0.1$. Ker je funkcija *efektivne* prepustnosti $T_{10}^{\text{eff}}(E)$ za sistem s sondo kar večkratnik $\left(\frac{\Gamma+\Gamma_2}{\Gamma}\right)$ koherentne (ta je prikazana na sliki 3.4), bo ta po obliki bistveno različna od dvo-terminalnega primera. Tako se magnituda stacionarnega električnega toka načeloma ne bo ujemala s primerom, kjer sondo odklopimo.

3.2.4 Pomen resonančnih širin

Do prepustnosti oblike 3.9 je mogoče priti tudi z reševanjem problema sipalnih stanj končne potencialne jame v valovni formulaciji [11] ali pa tuneliranja skozi dve zaporedni barieri, kjer vsaki pripišemo prepustnost $T_{1,2}$ in ju nato koherentno seštejemo kot v enačbi 2.17 [4].

Tako je ilustriran razlog za angleško poimenovanje prekrivalnih integralov γ_0 , γ_2 z besedo *hopping* - "skakanje". V približku tesne vezi je tuneliranje na piko skozi barieri že vključeno v formulacijo sistema.

Če posameznemu stiku pika - vodnik pripišem polovico resonančne širine $\Gamma/2$, dobim zanimivo kvaziklasično interpretacijo. Za neko dolžino pike w lahko definiramo frekvenco poskusov $\nu = v/2w = (1/2w\hbar) dE/dk$, za posamični resonančni širini $\Gamma_{0,1} = \Gamma/2$ pa nato velja [4]:

$$\Gamma_{0,1}/\hbar = \nu T_{10}.$$

Resonančna širina posamične bariere v enotah \hbar je število uspešnih tuneliranj na časovno enoto.

Sedaj se vrnimo na primer pike s sondo. Po enačbi 3.19 lahko rečemo, da je transmisija približno koherentna, dokler velja $\Gamma \gg \Gamma_2$. Vsaki resonančni širini Γ_i je mogoče pripisati karakteristični čas:

$$\tau_i = \frac{\hbar}{\Gamma_i}.\tag{3.20}$$

Neskončni karakteristični čas - neskončna življenska doba resonance - ustreza izolirani piki $\Gamma = 0$, torej na piki ujetemu elektronu brez možnosti pobega. V primeru, da z napetostno sondo po Büttikerju modeliramo kvazielastične sipalne procese, je parameter $1/\tau_2 = \Gamma_2/\hbar$ potrebno nastaviti enakega frekvenci sipanja (ang. scattering rate) [4].

3.3 Shema za časovno integracijo

V prejšnjem podpoglavju sem prikazal rezultate izračuna prepustnosti v približku tesne vezi. Nastavek za njihovo rešitev je bil v obliki stacionarnega sipalnega pro-

prepustnosti velja kvadrat enačbe 3.13: $T_{20}/T_{10} = \frac{2\Gamma_2}{\Gamma}$.

blema, prav tako pa tudi ves formalizem Landauerja in Büttikerja v osnovni obliki napove le stacionarne vrednosti količin. 7

3.3.1 Zaključitev stacionarnega sistema

Preden opišem shemo za časovno integracijo sistema z neposrednim reševanjem Schrödingerjeve enačbe, bi želel na kratko na mojem primeru opisati formalen postopek iskanja stacionarnih rešitev, kjer neskončno Hamiltonko tesne vezi primerno zaključimo.

Stacionarno Schrödingerjevo enačbo $(E - \hat{H})\Psi = 0$ za sistem brez pike (tj. enačbo 3.7) lahko zapišem kot linearni sistem z neskončno tri-diagonalno matriko:

$$\begin{pmatrix} \gamma & E & \gamma & 0 & \dots & \\ 0 & \gamma & E & \gamma_0 & 0 & \dots & \\ \dots & 0 & \gamma_0 & E - \epsilon_0 & \gamma_0 & 0 & \dots \\ & \dots & 0 & \gamma_0 & E & \gamma & \dots \\ & \dots & 0 & \gamma & E & \gamma & \end{pmatrix} \begin{pmatrix} \vdots \\ \psi_{-2} \\ \psi_{-1} \\ \Psi_0 \\ \psi_1 \\ \psi_2 \\ \vdots \end{pmatrix} = 0.$$
(3.21)

Za ψ_n lahko rečem, da imajo zaradi translacijske simetrije v vodnikih obliko $\psi_n = Ae^{ikna} + Be^{-ikna}$ v levem in $\psi_n = Ce^{ikna} + De^{-ikna}$ v desnem. Rešitev na piki Ψ_0 pa se dobi iz zveze s sosednjima mestoma, kar ustreza zveznosti ne-diskretizirane valovne funkcije [16].

Dve konstanti lahko eliminiram, če rešitev iščem v obliki *sipalnega stanja*, tj. stanja, ki je posledica na piko z leve vpadnega valovanja z amplitudo A = 1. To samodejno postavi tudi D = 0. Za preostala koeficienta uporabim že znani oznaki t in r.

Ideja za zaključitev matrike je uporaba translacijske simetrije v vodnikih. ψ_2 lahko izrazim kot $\psi_2 = te^{2ika} = \psi_1 e^{ika}$. Tako lahko matriko zaključim na mestu n = 1, če element Hamiltonke H_{11} popravim za člen oblike:

$$\Sigma_{1(\text{desni})} = -\gamma e^{ika}.$$
(3.22)

Na levi podobno velja $\psi_{-1} = e^{-ika} + r e^{ika} \rightarrow r = (\psi_{-1} - e^{-ika}) e^{-ika}$ ter $\psi_{-2} = e^{-2ika} + re^{2ika} = \psi_{-1} e^{ika} + (e^{-2ika} - 1)$. Diagonalni element Hamiltonke $H_{-1,-1}$ zopet dobi popravek $\Sigma_{0(\text{levi})} = -\gamma e^{ika}$, s katerim se matriko lahko zaključi. Dodaten pa je konstanten člen oblike:

$$\Gamma_0 = -\gamma (e^{-2ika} - 1). \tag{3.23}$$

Če tega prenesem na drugo stran enačbe, dobim za stacionarno rešitev Schrödin-

⁷Obstaja pa časovna razširitev, imenovana generaliziran formalizem Landauerja in Büttikerja [15].

gerjeve enačbe končen sistem dimenzije 3×3 :

$$\begin{pmatrix} e - \Sigma_0 & \gamma_0 & 0\\ \gamma_0 & E - \epsilon_0 & \gamma_0\\ 0 & \gamma_0 & E - \Sigma_1 \end{pmatrix} \begin{pmatrix} \psi_{-1}\\ \Psi_0\\ \psi_1 \end{pmatrix} = \begin{pmatrix} \Gamma_0\\ 0\\ 0 \end{pmatrix}.$$
 (3.24)

V literaturi ima člen Σ angleško ime *self-energy* [4] (oziroma nekoliko nerodno slovensko "lastna energija") in igra vlogo "efektivnega" popravka, ki ga je Hamiltonki osrednjega območja potrebno prišteti zaradi sklopitve s polneskončnim vodnikom. Člen Γ_0 pa sem pridobil na račun iskanja rešitve, vpadajoče iz levega vodnika; v splošnem opiše prispevek vodnika k spektralni širini.

Pogosto se rešitev v vodnikih (torej brez območja sipanja) išče v obliki prej omenjenih sipalnih stanj, kjer vsako sestavlja superpozicija vpadnega valovanja iz posamičnega vodnika ter odbitih in prepuščenih valov. Do sedaj omenjeno stanje, vpadajoče z leve (kot pri vodnikih indeks 0) lahko tako zapišem kot:

$$\Psi_{0,k} \propto \Psi_{\text{vpadno},k} + \sum_{\text{vodniki}} \Psi_{\text{odbita/prep},k} = 1 e^{ikna} \,\delta_{n<0} + s_{0,0} e^{-ikna} \delta_{n<0} + s_{1,0} e^{ikma} \,\delta_{n>0}.$$
(3.25)

S simbolom δ sem označil, da se posamičen člen upošteva glede na vrednost indeksa mest *n*. Elementi $s_{1,0} = t$ in $s_{0,0} = r$ tvorijo *sipalno matriko*, ki sem jo definiral v podpoglavju 2.5.1. Preostala člena $s_{0,1}$ in $s_{1,1}$ se v zgornjem primeru dobi z reševanjem sistema v enačbi 3.24 še za drugo sipalno stanje, vpadajoče z desne s pripadajočo Γ_1 .

3.3.2 Zaključitev sistema v časovno odvisni shemi

Za reševanje časovno odvisne Schrödingerjeve enačbe uporabljam integrator, ki ga je po zgledu članka avtorjev Kurth *in dr.* [2] implementiral moj mentor, dr. Tomaž Rejec. Podroben opis postopka presega nivo diplomskega dela, vseeno pa želim ilustrirati osnove njegovega delovanja. Po analogiji s predhodnimi odstavki moramo za (na primer) sistem z dvema vodnikoma zaključiti neskončen sistem bločne oblike:

$$i\hbar\frac{\partial}{\partial t}\Psi(t) = i\hbar\frac{\partial}{\partial t}\begin{pmatrix}\psi_0(t)\\\psi_C(t)\\\psi_1(t)\end{pmatrix} = \begin{pmatrix}\mathbf{H}_{00} & \mathbf{H}_{0C} & 0\\\mathbf{H}_{C0} & \mathbf{H}_{CC} & \mathbf{H}_{C1}\\0 & \mathbf{H}_{1C} & \mathbf{H}_{11}\end{pmatrix}\begin{pmatrix}\psi_0(t)\\\psi_C(t)\\\psi_1(t)\end{pmatrix}, \quad (3.26)$$

kjer sem z indeksi 0, C, 1 označil levo, centralno in desno območje, bloki Hamiltonke pa so načeloma časovno odvisni. Če se omejim na približek tesne vezi neodvisnih elektronov s skakanjem med le najbližjimi sosedi in piko dimenzije enega mesta, bi Hamiltonka (prim. enačba 3.21) izgledala tako:

$$\hat{H}\Psi(t) = \begin{pmatrix} -\gamma & U_{0}(t) & -\gamma & 0 & \dots & \\ 0 & -\gamma & U_{0}(t) & -\gamma_{0} & 0 & \dots & \\ \dots & 0 & -\gamma_{0} & \epsilon_{0} & -\gamma_{0} & 0 & \dots \\ \dots & 0 & -\gamma_{0} & U_{1}(t) & -\gamma & \dots \\ & \dots & 0 & -\gamma & U_{1}(t) & -\gamma \end{pmatrix} \begin{pmatrix} \vdots \\ \psi_{-1} \\ \Psi_{0} \\ \psi_{1} \\ \psi_{2} \\ \vdots \end{pmatrix} = i\hbar \frac{\partial}{\partial t}\Psi(t),$$
(3.27)

kjer dopuščam, da na vodnike delujemo s časovno odvisnim potencialom $U_{0,1}(t)$. Prej omenjene valovne funkcije v npr. levem vodniku sem tu razpisal po mestih $\psi_0(t) = (\psi_{-1}, \psi_{-2}, ...).$

Ker imamo časovno odvisni problem, za zaključitev sistema ne ustreza več le poznavanje simetrijskih lastnosti vodnikov. Avtorji za opis časovnega odziva uvedejo retardirano (v času) Greenovo funkcijo vodnika $g_{0,1}(t,t')$, ki reši časovno odvisno Schrödingerjevo enačbo za izoliran (na primer levi) vodnik:

$$\left[i\hbar\frac{\partial}{\partial t} - \mathbf{H}_{00}(t)\right] \,\boldsymbol{g}_0(t,t') \,=\, \delta(t-t')$$

Greenova funkcija je odziv vodnika na enotno vzbujanje ob času t'. Valovni funkciji v levem vodniku $\psi_0(t)$ v sistemu enačb 3.26 pripada:

$$i\hbar \frac{\partial}{\partial t}\psi_0(t) = \mathbf{H}_{00}(t)\psi_0(t) + \mathbf{H}_{0C}(t)\psi_C(t).$$
(3.28)

Desna stran zgornje enačbe vsebuje nehomogeni člen $\mathbf{H}_{0C}(t) \psi_C(t)$ v enačbi z linearnim operatorjem $\left[i\hbar \frac{\mathrm{d}}{\mathrm{d}t} - \mathbf{H}_{00}(t)\right]$. Rešitev je podobno kot za krajevne Greenove funkcije [17] podana kot integralska transformacija nehomogenega člena z jedrom Greenove funkcije:

$$\psi_0(t) = i\boldsymbol{g}_0(t,0)\,\psi_0(0) \,+\, \int_0^t \mathbf{H}_{0C}(t')\,\psi_C(t')\,\boldsymbol{g}_0(t,t')\,\mathrm{d}t'. \tag{3.29}$$

Prvi člen pride iz začetnega pogoja za operator in predstavlja "vzbujanje" ob času 0 z začetnim stanjem $\psi_0(0)$, drugega pa dobimo iz nehomogenega člena in predstavlja stalno vzbujanje na račun centralnega območja s časovnim potekom $\mathbf{H}_{0C}(t) \psi_C(t)$.

Ko se z enakim postopkom eliminira še desno stran - $\psi_1(t)$, lahko za centralno območje $\psi_C(t)$ zapišemo enačbo končne dimenzije:

$$i\hbar \frac{\partial}{\partial t} \psi_C(t) = \mathbf{H}_{CC}(t) \psi_C(t) + i \sum_{\alpha=0,1} \mathbf{H}_{C\alpha}(t) \, \boldsymbol{g}_{\alpha}(t,0) \, \psi_{\alpha}(0) + \int_0^t \boldsymbol{\Sigma}(t,t') \, \psi_C(t') \, \mathrm{d}t',$$
(3.30)
$$\boldsymbol{\Sigma}(t,t') = \sum_{\alpha=0,1} \mathbf{H}_{C\alpha}(t) \, \boldsymbol{g}_{\alpha}(t,t') \, \mathbf{H}_{\alpha C}(t').$$

 $\Sigma(t, t')$ igra vlogo popravka zaradi sklopitve z vodniki in jo avtorji zopet imenujejo *self-energy*. Celoten integral s tem členom poimenujejo *spominski* (ang. *memory*), saj vključuje prispevke vseh prejšnjih stanj. Drugi člen v enačbi 3.30 prispevajo začetna stanja v vodnikih.

3.3.3 Časovna propagacija

V numeriki je prostorska diskretizacija že storjena s približkom tesne vezi. Za časovno propagacijo pa avtorji uporabljajo shemo, ki bi jo lahko opisali kot *Crank-Nicholsonovo* oz. *Cayleyevo* metodo z vmesnim korakom [18].

Ta izhaja iz razvoja propagatorja časovno odvisne Schrödingerjeve enačbe. V limiti infinitezimalnih časovnih korakov $\Delta t \rightarrow 0$ za rešitev ob naslednjem času $\psi(t + \Delta t)$ velja:

$$\psi(t + \Delta t) = \hat{U}(\Delta t) \psi(t), \qquad (3.31)$$

kjer je časovni propagator (v tej limiti) enak:

$$\hat{U}(\Delta t) = e^{-\frac{i}{\hbar}\hat{H}\Delta t}.$$
(3.32)

Privzel sem, da je na skali Δt Hamiltonka konstantna. S tem privzetkom se sedaj prestavim v matrično formulacijo. V prvem redu razvoja bo veljalo:

$$\psi(t + \Delta t) \approx (\mathbf{1} - \frac{i}{\hbar} \mathbf{H} \Delta t) \psi(t) + \mathcal{O}(\Delta t^2) = \mathbf{U}_1 \psi(t) + \mathcal{O}(\Delta t^2).$$
 (3.33)

Težava takšnega numeričnega propagatorja U_1 (z 1 sem označil red) je, da ni unitaren:

$$\boldsymbol{U}^{\dagger}\boldsymbol{U} = (\mathbf{1} + \frac{i}{\hbar}\boldsymbol{H}\Delta t)(\mathbf{1} - \frac{i}{\hbar}\boldsymbol{H}\Delta t) = \mathbf{1} - (\frac{i}{\hbar}\boldsymbol{H}\Delta t)^2 \neq \mathbf{1}$$

in tako ne ohranja normalizacije stanj.

Tipična izboljšava je *Cayleyeva metoda*, kjer enačbo 3.31 na obeh straneh pomožimo z $\exp\left(+\frac{i}{\hbar}\frac{\Delta t}{2}\hat{H}\right)$. Razvoj obeh eksponentnih funkcij do prvega reda da:

$$\left(\mathbf{1} + \frac{i}{\hbar} \mathbf{H} \frac{\Delta t}{2}\right) \psi(t + \Delta t) \approx \left(\mathbf{1} - \frac{i}{\hbar} \mathbf{H} \frac{\Delta t}{2}\right) \psi(t).$$
(3.34)

Če z $\boldsymbol{U}_{C}=\frac{1-\frac{i}{\hbar}\boldsymbol{H}\frac{\Delta t}{2}}{1+\frac{i}{\hbar}\boldsymbol{H}\frac{\Delta t}{2}}$ označim Cayleyev propagator, je ta očitno unitaren:

$$oldsymbol{U}_C^\dagger oldsymbol{U}_C = rac{1+rac{i}{\hbar}oldsymbol{H}rac{\Delta t}{2}}{1-rac{i}{\hbar}oldsymbol{H}rac{\Delta t}{2}} \; rac{1-rac{i}{\hbar}oldsymbol{H}rac{\Delta t}{2}}{1+rac{i}{\hbar}oldsymbol{H}rac{\Delta t}{2}} = 1.$$

Red natančnosti dobim z razvojem $U_C(\Delta t)$ po potencah Δt :

$$\frac{1-\frac{i}{\hbar}\boldsymbol{H}\frac{\Delta t}{2}}{1+\frac{i}{\hbar}\boldsymbol{H}\frac{\Delta t}{2}}\approx 1-\frac{i}{\hbar}\boldsymbol{H}\Delta t-\frac{1}{2\hbar^2}\boldsymbol{H}^2\Delta t^2+\frac{i}{4\hbar^3}\boldsymbol{H}^3\Delta t^3+\mathcal{O}(\Delta t^4).$$

Ta se s "pravilnim" razvojem propagatorja $e^{-\frac{i}{\hbar}H\Delta t}$ natanko ujema do člena z Δt^2 , tako da je Cayleyeva shema v natančnosti 2. reda.

Poglavje 4

Rezultati

Kot sem omenil v prejšnjem poglavju, so vse enote izražene z vrednostjo prekrivalnega integrala v polneskončnih vodnikih γ , ki ga v numeriki postavim na vrednost 1. Za jasnejšo ilustracijo mehanizmov lahko tudi nekaj preostalih parametrov sistema postavim na konstantne vrednosti:

- Prvi od "odvečnih" parametrov je vrednost potenciala na piki ϵ_0 , ki jo postavim na 0, kar pomeni sredino energijskega pasu v vodnikih. Za stacionarne primere iz analitične oblike prepustnosti vemo, da ta v njej le premika lokacijo vrha resonance.
- Drugi prost parameter v shemi za integracijo je Fermijeva energija v snovi E_F , ki jo prav tako postavim na sredino prevodnega pasu (v odsotnosti potenciala): $E_F = 0$. Tega ne storim toliko iz fizikalnih razlogov, saj se ta v dejanskih implementacijah sistemov pogosto nahaja blizu dna pasu (kot sem omenil v podpoglavju 2.1). Razlog je bolj tehnične narave: v energiji si želim biti dovolj oddaljen od robov pasu, kjer naletimo tako na numerične kot teoretične komplikacije. Ena izmed njih je (van Hovejeva) singularnost v enodimezionalni gostoti stanj: $g(E) \propto \frac{dk}{dE} = \sin(ka)^{-1}$. Te nimajo kaj dosti povezave z osnovno tezo dela, tako da se z njimi raje nisem ukvarjal.
- Poleg vsega naštetega želim spomniti, da sem vedno predpostavil nizkotemperaturno limito $T \rightarrow 0$, kar znatno olajša izračun integralov s Fermijevimi funkcijami.
- Napovedi formalizma Landauerja in Büttikerja v predstavljeni obliki dobro veljajo le za dovolj majhne napetostne razlike, kjer za prepustnost okvirno velja $T \neq T(\mu)$. Zato sem tipično reševal primer, ko na levem vodniku napetost postavim na vrednost $U_0 = 0.1$, na desnem pa pustim na ničli $U_1 = 0$. Za vodnike elektrode uporabljam naslednje indekse: 0 levi, 1 desni in 2 sonda. V časovnih simulacijah sem v levem vodniku uporabljal *nenaden vklop napetosti*, tj. ob t > 0 ta takoj zavzame končno vrednost.

Iz oblike dobljenih prepustnosti (slika 3.4) se da razbrati, da je o *resonančnem tuneliranju* smiselno govoriti le za relativno majhne vrednosti prekrivalnega integrala med piko in tokovnima vodnikoma $\gamma_0 \ll \gamma$.

Ker za majhne napetostne razlike prevaja le nekaj stanj okoli Fermijeve energije, ki je v mojem primeru za povrh vedno v resonanci $E_F = \epsilon_0 = 0$, stacionarno vrednost

toka dobro napove Landauerjeva formula (enačba 2.12). Ta je v tem primeru kar enaka:

$$I_0^{\text{stac}} = \frac{2e_0}{h} \int_{\mu_0}^{\mu_1} T_{10}^{\text{eff}}(E) dE.$$
(4.1)

Fermijeve funkcije so zaradi nizke temperature stopničaste oblike, funkcija $(f_0(E) - f_1(E))$ pa je kvečjemu negativna in tako ravno izniči predznak na račun naboja elektronov $-e_0$. V kolikor je ta prisotna, efekt napetostne sonde opiše efektivna prepustnost $T_{10}^{\text{eff}}(E)$ (enačba 3.19).

Časovni potek toka za piko brez sonde

V kolikor to res drži, pokaže slika 4.1. Na njej so prikazani poteki toka za sisteme brez sonde za različne, a majhne, vrednosti prekrivalnega integrala γ_0 . Napetost je bila postavljena na vrednost $U_0 = 0.1$ v levem vodniku.

(a) Časovni potek toka za različne γ_0 .

Slika 4.1: Casovni potek toka skozi sisteme brez sonde. *Podslika (a)*: Casovni potek toka skozi različne sisteme brez sonde. **Polne črte**: časovni potek toka, pridobljen z numerično integracijo Schrödingerjeve enačbe. **Prekinjene črte**: Stacionarna vrednost po Landauerjevi formuli. Izračun te je shematično prikazan na *podsliki* (b), kjer sem integrale prikazal z zapolnjenimi območji pod prepustnostmi.

Odstopanje od napovedane stacionarne vrednosti je največje za najšibkejše sklopljeno piko, in sicer okrog 1%. Tu gre pripomniti, da ima ta sicer najdaljši čas prehodnih pojavov (o čemer več kasneje), tako da je del odstopanja na ta račun. Razlog za preostalo odstopanje pa je najverjetneje predvsem numerične narave, saj integrator tok računa iz sipalnih stanj Ψ_k (enačba 3.25). Vsakemu od njih lahko pripišemo gostoto električnega toka (na stanje z določenim k), sorazmerno gostoti verjetnostnega toka:

$$j_k(x,t) = \frac{-2e_0\hbar}{m} \operatorname{Im}\left(\Psi_k^*(x,t)\frac{\partial}{\partial x}\Psi_k(x,t)\right).$$
(4.2)

Za celotni električni tok integrator namesto seštevanja prispevkov vsakega stanja te kar integrira po prostoru valovnih števil k. Efektivno gostota električnega toka na stanje j_k tako igra enako vlogo kot že omenjena energijska gostota električnega toka j(E), razlika pa je, da se bo zaradi oblike disperzijske relacije numerična integracija po enakomerno razporejenih k vedno nekoliko razlikovala od integracije po enakomerno razporejenih E. Ker me zanima tok v desni vodnik, $j_k(x,t)$ spremljam pri x takoj za piko in seštejem prispevke vseh (v tem primeru obeh) sipalnih stanj.

Na sliki 4.1 sem uporabil precejšnje število - 2000 - valovnih funkcij, kar je časovno zelo potratno. V postopku izračuna poteka toka v prisotnosti sonde si takšnega obsega nisem mogel privoščiti, zato sem za stacionarne vrednosti raje vzel limitne vrednosti integracije primernega števila stanj, tako da so bile te konsistentne skozi postopek.

Integrator mi omogoča tudi, da za prikazane poteke toka (slika 4.1a) preverim prej omenjeno neto gostoto toka $j_k(x = \text{za piko}, t)$.

(a) Vrednost gostote toka j_k za piko v stacionarnem stanju za različne γ_0 .

(b) Časovni potek $j_k(t)$ desno od pike.

Slika 4.2: Neto gostota toka v prostoru valovnih števil k med piko in desnim vodnikom za sistem brez sonde. Napetost v levem vodniku je pri $U_0 = 0.1$. Podslika (a) prikazuje porazdelitev za stacionarno stanje. Na podsliki (b) prikazujem celoten časovni razvoj porazdelitve za $\gamma_0 = 0.1$.

4.1 Priklop sonde

V podpoglavju 3.1.1 sem predstavil pogoj, da se tokovni vodnik res obnaša kot napetostna sonda: vanj ne teče neto tok $\int j_2(E,t) dE = 0$. V integracijski shemi to zagotovim z ustreznim določanjem časovnega poteka *napetosti na sondi* $U_2(t)$, tako da ta "blokira" neto tok v sondo.

Stacionarno vrednost napetosti na sondi U_2^{stac} dobim iz formalizma Landauerja

in Büttikerja, kjer upoštevam, da so Fermijeve funkcije stopničaste oblike:

$$\int_{\mu_0=E_F-e_0U_2}^{\mu_2=E_F-e_0U_2} T_{20}(E) \, dE = \int_{\mu_2=E_F-e_0U_2}^{\mu_1=E_F-e_0U_1} T_{21}(E) \, dE. \tag{4.3}$$

Prepustnost za sondo je preprosto $T_{20} = \left(\frac{\gamma_2}{\gamma_0}\right)^2 T_{10}$ (kvadrat enačbe 3.13), zaradi simetrije pa velja $T_{20} = T_{21}$. Zgornjo zvezo numerično rešim tako, da jo predelam v iskanje ničle z *Brentovo metodo*. Kot sem omenil v prejšnjem podpoglavju, moram dobljeno "teoretično" vrednost U_2^{stac} nekoliko popraviti, saj simuliran sistem ni tako natančen. To storim v nekaj korakih z bisekcijo oziroma njeno razširitvijo na več od dveh pod-intervalov, primerno za večjedrne procesorje.

Na sliki 4.3a sta prikazana časovna poteka obeh tokov, če za napetost na sondi uporabim kar stacionarno vrednost. Kot omenjeno sem se omejil na sistem z ozko resonanco (tu $\gamma_0 = 0.15$), sondo pa sem sklopil s skakanjem jakosti $\gamma_2 = 0.2$.¹

Na sliki 4.3b pa prikažem, da numeričen izračun stacionarne napetosti na sondi U_2^{stac} po enačbi 4.3 resnično da pravilne stacionarne vrednosti za *tok v desni vodnik* I_0 ; te pridobim z integracijo T^{eff} iz enačbe 4.1.

(b) Vrednosti stacionarnih tokov v desni vodnik I_0 za različne γ_0, γ_2 . Teoretične napovedi so označene s "teor", numerični rezultati, kjer je na sondi vedno U_2^{stac} , pa z "num".

Slika 4.3: Tok pri stacionarni napetosti na sondi. *Podslika (a)* prikazuje potek obeh tokov za $\gamma_0 = 0.15$, $\gamma_2 = 0.2$ in $U_0 = 0.1$, če na sondi držim konstantno $U_2 = U_2^{\text{stac}}$. *Podslika (b)* pa za nabor različnih γ_0, γ_2 primerja ujemanje teoretične napovedi stacionarnega toka v desni vodnik I_0^{stac} v prisotnosti sonde z dobljenimi rezultati z $U_2 = U_2^{\text{stac}}$.

Rezultati potrdijo, da je dobljena stacionarna vrednost U_2^{stac} pravilna. Za realistično modeliranje vpliva dekoherence na časovni potek toka pa je potrebno dobiti postopek za določitev *časovnega profila* $U_2(t)$, ki eliminira začetni, prehodni tok v sondo.

¹Spomnim, da je polovica toka nekoherentnega, ko velja $\sqrt{2}\gamma_0 = \gamma_2$

4.1.1 Določanje časovnega poteka napetosti na sondi

Za začetek bi poskušal še nekoliko podrobneje ilustrirati začetni odziv toka v sondo na napetosti na njej. Na naslednji sliki (slika 4.4) sta pobližje prikazana začetna tokova v sondo za nično in stacionarno ($U_2(t) = U_2^{\text{stac}}$) napetost na njej:

Slika 4.4: Prehodni tok v sondo pri napetosti na sondi enaki $U_2(t) = 0$ in $U_2(t) = U_2^{\text{stac}}$. Parametra prekrivalnih integralov sta enaka $\gamma_0 = 0.3$ in $\gamma_2 = 0.3$, napetost v levem vodniku pa je konstantna $U_0 = 0.1$.

Opaziti je, da se prvi odzivi toka na sondi I_2 na vklop napetosti v levem vodniku U_0 pojavijo najhitreje ob času $\tau \sim 1$, ne glede na napetost na sondi U_2 . To velja za širši nabor sistemov v režimu resonančnega tuneliranja. Zakasnitveni čas je velikostnega reda 1 in je po velikosti primerljiv z resonančnimi časi posamičnih resonančnih širin (prim. enačba 3.20). Kvaziklasična interpretacija je morda "čas potovanja" najhitrejših elektronov (torej elektronov s Fermijevo hitrostjo) iz levega vodnika v sondo po vzpostavitvi napetosti v vodniku [8], za kakršnekoli dodatne trditve pa bi potreboval konsistentno teoretično izpeljavo, ki je za takšno sondo nisem zasledil (prim. ref. [15]).

Ideja za rešitev problema minimizacije toka v sondo $I_2(t)$ je tako sledeča: če mi uspe numerično oceniti efektivni čas τ , s katerim je odziv toka v sondi zakasnjen glede na levi vodnik, lahko nastavim $U_2(t - \tau)$ tako, da predhodno blokira ta tok.

Po tem, ko iz začetne ocene τ nekoliko popravim s poskušanjem, za določitev pravilnega poteka napetosti $U_2(t)$ uporabim iterativno shemo. V njej začnem z začetnim približkom² stacionarne napetosti: $U_2^{n=0}(t) = konst. = U_2^{\text{stac}}$. Odziv toka v sondo na takšen potek napetosti $I_2^0(t)$ vsebuje informacije za pravilno modifikacijo $U_2(t)$ na naslednjem koraku.

Trenutni popravek napetosti ob času $t-\tau$: $\Delta^n(t)$ definiram kot proporcionalnega napaki - toku v sondo - ob času t, kjer tega skaliram glede na maksimalni tok v sondo ob konstantni, stacionarni vrednosti U_2^{stac} :

$$\Delta^{n}(t) = a \cdot \frac{I_{2}^{n}(t)}{\max(|I_{2}^{0}(t)|)}.$$
(4.4)

 $^{^{2}}$ Zaporedne približke poteka napetosti na sondi (in pripadajoča toka) označujem z indeksom n.

Parameter proporcionalnosti oz. mešanja $a \in (0,1)$ predstavlja nastavljivo "grobost" v popravljanju napetosti med zaporednimi približki. Za v delu obravnavane primere ozko resonančnih sistemov, kjer sta deleža koherentnega in nekoherentnega toka okvirno enakega velikostnega razreda, sem vzel za velikost proporcionalnega parametra $a \sim 0.2$.

S popravkom $\Delta^n(t)$ je predpis za napetost ob času $(t - \tau)$ v naslednji iteraciji nato enak:

$$U_2^{n+1}(t-\tau) = U_2^n(t-\tau) - \Delta^n(t) U_2^{\text{stac}}.$$
(4.5)

Negativni predznak popravka je posledica tega, da dà prenizka napetost na sondi tok iz pike v sondo, torej $I_2(t) < 0$, in obratno previsoka pozitiven.

Kot metriko kakovosti približka $U_2^n(t)$ sem vzel integral absolutne vrednosti temu pripadajočega toka v sondo $I_2^n(t)$:

$$||I_2^n(t)|| = \int_0^{t_{konec}} |I_2(t)| dt,$$

časovnega trajanja integracije t_{konec} pa seveda med postopkom iskanja rešitve nisem spreminjal.

V kolikor se v naslednjem koraku metrika poslabša, poskušam z zmanjševanjem a; okvirno pa lahko rečem, da za sisteme z ozko resonanco - majhno γ_0 - postopek konvergira: metrika tipično doseže vrednosti okoli odstotka začetne ali manj. S pojmom "konvergenten postopek" mislim primer, kjer se metrika asimptotsko približuje ničli (postopek sicer prekinem pri zadovoljivi natančnosti). To velja le na intervalu ustreznih ocen τ ; nasprotno se za pretirano napačne metrika toka v sondo začne hitro dvigovati. Ilustracija konvergentnega postopka je prikazana na slikah 4.5 in 4.6 za vrednosti parametrov $\gamma_0 = \gamma_2 = 0.3$.

(a) Približki $U_2^n(t)$.

(b) Potek metrike v iteraciji, os y v skali desetiškega logaritma.

Slika 4.5: Iterativni približki rešitve $U_2^n(t)$. Podslika (a) prikazuje ničti, prvi, deseti in stoti približek rešitve za napetost na sondi $U_2(t)$, podslika (b) pa vrednost metrike toka v sondo tekom postopka z osjo y v skali desetiškega logaritma. Obe vrednosti prekrivalnih integralov sta enaki 0.3, napetost na levi elektrodi pa je $U_0 = 0.1$.

Slika 4.6: Tokovi v iterativni shemi. *Podslika (a)* prikazuje potek toka v sondo $I_2^n(t)$ za ničto, prvo, deseto in stoto iteracijo v shemi s pripadajočimi poteki napetosti na sliki 4.5a, *podslika (b)* pa prikazuje vrednost toka v desni vodnik $I_0^n(t)$, kjer sta deseta in stota iteracija praktično neločljivi. Vrednosti parametrov so: $\gamma_0 = \gamma_2 = 0.3$, $U_0 = 0.1$.

Dobljeni poteki napetosti na sondi (slika 4.5a) konvergirajo k oblikam postopnega dvigovanja napetosti od ničle k stacionarni vrednosti z morebitnimi dodanimi manjšimi oscilacijami, ki so posledica rahle napake v določanju časa zamika τ . Zakaj ta napaka ni kritična, je prikazano na sliki 4.6b, kjer je razlika med tokom v desni vodnik $I_0(t)$ po desetem in stotem približku zelo majhna. Z drugimi besedami: če za izbran, četudi rahlo napačen, τ postopek konvergira, se velika večina toka v sondo eliminira na prvih nekaj korakih in je dobljen potek zadovoljiva numerična rešitev za napetost na sondi.

Dodatna interpretacija morda prihaja iz članka avtorjev Förster *in dr.* [19]: ti pojasnijo, da imajo realne, tj. fizične napetostne sonde oscilacije v napetosti na račun njihovih končnih kapacitivnosti, ki določijo časovno skalo $\tau_2 = RC$. V elektronskem smislu se realna napetostna sonda delno obnaša kot visokoprepustni filter oz. slabše sledi hitrim variacijam v napetosti; popolnoma ničelne morajo biti tako le nizkofrekvenčne komponente toka v sondo.

Zanimivo podoben rezultat dobim za z mojim postopkom pridobljene poteke napetosti. Na intervalu vrednosti ocene zamika τ kjer postopek konvergira, periodogrami (slika 4.7) začetnega in končnih tokov v sondo $I_2^n(t)$ prikažejo, da postopek dobro eliminira nizkofrekvenčne komponente toka. ³ Slabša ocena zamika prinese dodatne visokofrekvenčne komponente spektra. Te so morda analogne nezmožnosti sledenja realne sonde hitrim spremembam v toku; zaenkrat pa lahko z gotovostjo trdim le, da so posledica specifičnega numeričnega postopka določanja $U_2(t)$.

Limita napetostne sonde, ki popolnoma eliminira energijsko gostoto toka $j_2(E)$ se imenuje dekoherenčna sonda oz. v angleščini *dephasing probe* [15]. Njena porazdelitvena funkcija mora biti takšna, da se blokira tok ob vsakem času na vsakem

³Značilna frekvenca, ki jo lahko pripišemo sondi, je $1/\tau_2 = \Gamma_2/\hbar$.

Slika 4.7: Periodogram (z osjo y v skali desetiškega logaritma) toka v sondo ob stacionarni napetosti $U_2^{n=0}$ in tokov v sondo po opravljenih stotih iteracijah postopka za različne ocene zamika sonde τ . Karakteristična frekvenca za sondo je $f_2 = 1/\tau_2 = \Gamma_2/\hbar = 2\gamma_2^2/\gamma = 0.18$.

energijskem podintervalu in je tako hudo neravnovesna, tako da nima smisla govoriti o kemijskem potencialu oz. napetosti [19]. V mojem primeru pa lahko rečem, da je tok *kvazielastičen*, saj večinoma prevajajo elektroni okoli Fermijevega valovnega števila (sliki 4.2). Sonda tako vstopajoče elektrone "vrne" v relativno ozkem energijskem intervalu. To je tudi razlog, da efektivna prepustnost T^{eff} tako dobro napove stacionarni tok (prim. slika 4.3b) [4].

4.2 Dobljeni poteki toka v prisotnosti sonde

S pridobljenimi poteki napetosti na sondi lahko sedaj prikažem njen učinek na časovni potek toka iz levega v desni vodnik. Omejil sem se na sisteme z relativno ozko resonanco v energijski skali: $\gamma_0 = 0.15, 0.3$. Za ti vrednosti γ_0 sem variiral jakost sklopitve pike s sondo γ_2 na intervalu, kjer sta oba parametra primerljive velikosti. Iz zveze za T^{eff} (enačba 3.19) sledi, da pri razmerju teh $\sqrt{2\gamma_0} = \gamma_2$ velja razmerje 1 : 1 med koherentnim in nekoherentnim deležem toka. Dobljeni poteki so prikazani na slikah 4.8 in 4.9.

Opaziti je, da na sliki 4.8 prehodni tok za majhne γ_2 preseže stacionarno vrednost. Ker tega pri $\gamma_0 = 0.3$ (slika 4.9) ni opaziti, sklepam, da je to na račun primerljivih velikosti prekrivalnega integrala $\gamma_0 = 0.15$ in napetosti v levem vodniku $U_0 = 0.1$ (enak učinek je opaziti v ref. [2]).

Zmanjšanje velikosti stacionarne vrednosti toka ob povečevanju γ_2 bi bilo prisotno tudi za popolnoma idealne sonde in je posledica razširitve funkcije prepustnosti ob prisotnosti sonde (slika 3.4).

Slika 4.8: Časovni potek toka iz levega v desni vodnik pri $\gamma_0 = 0.15$ za različne jakosti prekrivalnega integrala med piko in sondo γ_2 . Napetost v levem vodniku je bila konstantna $U_0 = 0.1$.

Slika 4.9: Časovni potek toka iz levega v desni vodnik pri $\gamma_0 = 0.3$ za različne jakosti prekrivalnega integrala med piko in sondo γ_2 pri napetosti v levem vodniku $U_0 = 0.1$.

Učinek napetostne sonde na sam časovni potek tokov je morda bolje opazen, če te normiram na njihovo stacionarno vrednost, kar za obe vrednosti γ_0 prikazujem na slikah 4.10.

Slika 4.10: Časovni poteku toka, normirani na stacionarno vrednost. Pri $\gamma_0 = 0.15$ - *podslika (a)* sem izpustil poteke z $\gamma_2 < \gamma_0$, kjer velikost prehodnega toka preseže stacionarno.

Boljša sklopitev sonde s piko - večji delež nekoherentnega toka - torej drastično pohitri konvergenco toka k stacionarni vrednosti, kar kvantitativno opišem v naslednjem podpoglavju.

4.3 Model za vpliv γ_2 na časovni potek toka

Iz formalizma *neravnovesnih Greenovih funkcij* (v literaturi tudi *Keldyshevega formalizma* [15]) se dobi dvoparametrični model, s katerim želim opisati časovne poteke toka po nekem začetnem prehodnem času [20]:

$$I_0(t; A, \lambda) = A \frac{e^{-\lambda t}}{\lambda t} + I_0^{\text{stac}}.$$
(4.6)

Asimptotska vrednost I_0^{stac} ni prost parameter modela, ampak jo vzamem iz podatkov. Za prost parameter A tipično velja $A \approx -I_0^{\text{stac}}$. Model sem prilegal v prejšnjem podpoglavju predstavljenim tokovom od časa t = 4 naprej, da sem tako izpustil začetne prehodne pojave.

Na sliki 4.11a so prikazani rezultati za zelo ozko resonanco - $\gamma_0 = 0.15$, kjer sem izpustil primere, v katerih prehodni tok preseže stacionarnega in so tako izven zmožnosti opisa z modelom. Že na prvi pogled je očitno, da za ta primer model slabše opiše potek tokov pri majhnih γ_2 . Pri nekoliko večjih γ_2 vseeno dobim z večanjem slednje naraščajočo vrednost parametra modela λ , kar prikazuje slika 4.11b. To je razumljivo, če λ povežemo s celotnim resonančnim časom sistema $\lambda \propto \Gamma + \Gamma_2 \propto 1/\tau_{sis}$. Ta odvisnost je precej lepše razvidna pri prileganju rezultatov za $\gamma_0 = 0.3$ (sliki 4.12).

(b) Odvisnost parametra modela λ od celotne resonančne širine $\Gamma + \Gamma_2$.

(a) Polne črte: dobljeni časovni poteki toka, prekinjene črte: napoved po modelu za različne γ_2 . $\gamma_0 = 0.15$.

Slika 4.11: Podslika (a): Prileganje modela iz enačbe 4.6 za $\gamma_0 = 0.15$. S polnimi črtami so prikazani tokovi, dobljeni z integracijo, s prekinjenimi pa najbolje prilegajoči se modeli. Podslika (b) prikazuje vrednosti in napake (oz. interval ene standardne deviacije) parametra modela λ v odvisnosti od celotne resonančne širine $\Gamma + \Gamma_2$.

 $\gamma_0 = 0.3.$

0.32 0.30 0.28 0.26 0.24 0.22 0.20 0.18 0.16 $0.14 \stackrel{{}_{\scriptstyle \frown}}{0.2}$ 0.4 0.6 0.8 $1.0 \\ \Gamma + \Gamma_2$ 1.2 1.6 1.4 1.8

(a) Polne črte: dobljeni časovni poteki toka, prekinjene črte: napoved po modelu za različne γ_2 .

(b) Odvisnost parametra modela λ od celotne resonančne širine $\Gamma + \Gamma_2$. Intervali $\pm \sigma_{\lambda}$ so zaradi dobrega ujemanja slabše opazni.

Slika 4.12: Podslika (a): Prileganje modela za $\gamma_0 = 0.3$. S polnimi črtami so prikazani dejanski tokovi, s prekinjenimi pa najbolje prilegajoči se modeli. Na podsliki (b) so prikazane vrednosti in intervali ene standardne deviacije parametra modela λ v odvisnosti od $\Gamma + \Gamma_2$.

Za nekoliko širše resonance ($\gamma_0 = 0.3$) model zelo dobro opiše potek naraščanja toka od zaključenega prehodnega obdobja do dosežene stacionarne vrednosti. Numerične vrednosti λ so za $\gamma_0 = 0.3$ za velikostni red večje od tistih za $\gamma_0 = 0.15$, kar je posledica tega, da je karakteristični čas celotnega sistema odvisen od njegove celotne resonančne širine, torej $\Gamma + \Gamma_2$.

Dobljene vrednosti parametra λ (slika 4.12b) nakazujejo na pojemajoč vpliv povečevanja resonančne širine na čas približevanja k stacionarnem toku. Za te vrednosti Γ in Γ_2 so funkcije prepustnosti (slika 3.4) že tako stran od Lorentzovih oblik, da ne moremo več govoriti o resonančnem tuneliranju.

Poglavje 5

Zaključek

V diplomskem delu sem preučeval, kako na tok skozi sistem s kvantno piko vpliva dekoherenca, ki jo vanj vnesem z napetostno sondo. Vpliv lahko okvirno razdelim na dva dela, kjer se prvi nanaša na stacionarne lastnosti toka, drugi pa na sam časovni potek.

Z rešitvijo enačb približka tesne vezi sem dobil oblike funkcij prepustnosti, ki so v primerjavi z resonančnim sistemom brez sonde precej razširjene v energijskem spektru. Prikazal sem, da se lahko stacionarne efekte sonde nato "pospravi" v efektivno prepustnost in za napoved stacionarne vrednosti toka uporabi preprosto obliko Landauerjeve formule. Zaradi energijske razširitve prepustnosti pa se stacionarne vrednosti toka s primerom brez sonde ujemajo le za velike napetostne razlike.

Drugi del se nanaša na časovni potek toka skozi sistem. Da sem tega pravilno določil, sem moral najprej ustrezno numerično implementirati obnašanje napetostne sonde. Odločil sem se za relativno preprost iteracijski postopek, ki tok v sondo obravnava kot za čas τ zakasnjen odziv na napetost na njej. Za začetni približek vzamem pravilno stacionarno vrednost napetosti na sondi, ki izhaja iz formalizma Landauerja in Büttikerja. To nato popravljam, dokler ni tok v sondo zanemarljiv. Za dobljeni frekvenčni spekter preostalega toka se izkaže, da se morda do neke mere ujema s primerom, kjer bi imel opravka s fizično napetostno sondo, ki slabše sledi hitrim fluktuacijam v toku; hipoteza pa bi potrebovala dodatno preučitev. Primerna tema za nadaljnjo obravnavo bi bila morda tudi teoretična določitev efektivnega zamika sonde τ , ki je za tak primer nisem zasledil (prim. ref. [15]).

Z dobljenimi rešitvami poteka napetosti na sondi lahko potegnem zaključke o njenem vplivu na časovno karakteristiko toka skozi sistem. Opaziti je, da se z naraščajočo vrednostjo prekrivalnega integrala med sondo in piko γ_2 in posledično naraščajočim nekoherentnim deležem toka bistveno skrajša čas, ki ga sistem potrebuje, da doseže stacionarno stanje. Za kvantitativni opis se poslužim modela, ki "hitrost" približevanja toka stacionarni vrednosti opiše z enim parametrom λ . Na območju, kjer sta velikosti obeh prekrivalnih integralov primerljivi, se s prileganjem modela podatkom izkaže, da je vrednost λ okvirno premo sorazmerna celotni resonančni širini $\Gamma + \Gamma_2$.

Literatura

- M. Büttiker, "Symmetry of electrical conduction", IBM Journal of Research and Development 32, 317 (1988).
- [2] S. Kurth, G. Stefanucci, C.-O. Almbladh, A. Rubio in E. K. U. Gross, "Timedependent quantum transport: A practical scheme using density functional theory", Phys. Rev. B 72, 035308 (2005).
- [3] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel in C. T. Foxon, "Quantized conductance of point contacts in a two-dimensional electron gas", Phys. Rev. Lett. 60, 848 (1988).
- [4] S. Datta, *Electronic Transport in Mesoscopic Systems*, 1. izd., Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, Zv. 3 (Cambridge University Press, 1995).
- [5] T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport, 1. izd. (Oxford University Press, 2007).
- [6] C. W. J. Beenakker in H. van Houten, "Quantum Transport in Semiconductor Nanostructures", v Semiconductor Heterostructures and Nanostructures, Solid State Physics, Zv. 44, ur. H. Ehrenreich in D. Turnbull (Academic Press, 1991).
- [7] T. Heinzel, *Mesoscopic Electronics in Solid State Nanostructures*, 2. izd. (Wiley-VCH Verlag, 2007).
- [8] S. Chen, Y. Zhang, S. Koo, H. Tian, C. Yam, G. Chen in M. A. Ratner, "Interference and Molecular Transport—A Dynamical View: Time-Dependent Analysis of Disubstituted Benzenes", The Journal of Physical Chemistry Letters 5, 2748 (2014).
- [9] N. W. Ashcroft in N. D. Mermin, Solid State Physics, 1. izd. (Harcourt College Publishers, 1976).
- [10] S. Datta, *Quantum Transport: Atom to Transistor* (Cambridge University Press, 2005).
- [11] F. Schwabl, *Quantum Mechanics*, 4. izd. (Springer Verlag, 2007).
- [12] C. W. Groth, M. Wimmer, A. R. Akhmerov in X. Waintal, "Kwant: a software package for quantum transport", New Journal of Physics 16, 063065 (2014).

- [13] Y. Nazarov in Y. Blanter, Quantum Transport: Introduction to Nanoscience (Cambridge University Press, 2009).
- [14] L. J. Fernández-Alcázar in H. M. Pastawski, "Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps", Phys. Rev. A 91, 022117 (2015).
- [15] H. M. Pastawski, "Classical and quantum transport from generalized Landauer-Büttiker equations", Phys. Rev. B 44, 6329 (1991).
- [16] M. Zwierzycki, P. Khomyakov, A. Starikov, K. Xia, M. Talanana, P. Xu, V. Karpan, I. Marushchenko, I. Turek, E. Bauer, G. Brocks in P. Kelly, "Calculating scattering matrices by wave function matching", Physica Status Solidi B: Basic research 245, 623 (2010).
- [17] I. Kuščer in A. F. Kodre, Matematika v fiziki in tehniki, 2. izd. (DMFA založništvo, 2006).
- [18] W. Schweizer, Numerical Quantum Dynamics, Progress in Theoretical Chemistry and Physics, Zv. 9 (Kluwer Academic Publishers, 2002).
- [19] H. Förster, P. Samuelsson, S. Pilgram in M. Büttiker, "Voltage and dephasing probes in mesoscopic conductors: A study of full-counting statistics", Phys. Rev. B 75, 035340 (2007).
- [20] R. Tuovinen, R. van Leeuwen, E. Perfetto in G. Stefanucci, "Time-dependent Landauer-Büttiker formula for transient dynamics", Journal of Physics: Conference Series 427, 012014 (2013).

Dodatek A

Izpeljava prepustnosti

A.1 Pika brez sonde

Zveze približka tesne vezi okoli pik
e $\left(n=0\right)$ so podane z enačbo3.7, ki jo tu z uporabo nastavka rešitve:

$$\Psi = \begin{cases} 1 e^{ikna} + re^{-ikna} & n < 0 \\ \Psi_0 & n = 0 \\ t e^{ikna} & n > 0 \end{cases}$$

razpišem kot:

$$E t e^{ika} = -\gamma t e^{2ika} - \gamma_0 \Psi_0$$
$$E \Psi_0 = \epsilon_0 \Psi_0 - \gamma_0 t e^{ika} - \gamma_0 (e^{-ika} + r e^{ika})$$
$$E (e^{-ika} + r e^{ika}) = -\gamma (e^{-2ika} + r e^{2ika}) - \gamma_0 \Psi_0$$

Iz prve enačbe eliminiram Ψ_0 :

$$\Psi_0 = \frac{(-1)}{\gamma_0} t e^{ika} \left(E + \gamma e^{ika} \right).$$

Povezava med r in t pride iz tretje enačbe:

$$r = t - \frac{e^{-2ika} \left(E + \gamma e^{-ika}\right)}{E + \gamma e^{ika}}$$

Ostane še enačba za piko:

$$E \Psi_0 = \epsilon_0 \Psi_0 - \gamma_0 \psi_1 - \gamma_0 \psi_{-1} \qquad / \leftarrow \{\Psi_0, \psi_1, \psi_{-1}\}$$
$$(E - \epsilon_0) \frac{(-1)}{\gamma_0} t e^{ika} (E + \gamma e^{ika}) = -\gamma_0 t e^{ika} - \gamma_0 (e^{-ika} + r e^{ika}) \qquad / \leftarrow r$$
$$(E - \epsilon_0) \frac{(-1)}{\gamma_0} t e^{ika} (E + \gamma e^{ika}) = -\gamma_0 t e^{ika} - \gamma_0 \left[t e^{ika} + e^{-ika} \frac{2i\gamma \sin(ka)}{E + \gamma e^{ika}} \right]$$

Če člene z neznanko t prestavim na levo stran, dobim:

$$t e^{ika} \left[\frac{(+1)}{\gamma_0} (E - \epsilon_0) (E + \gamma e^{ika}) - 2\gamma_0 \right] = +\gamma_0 \gamma e^{-ika} \frac{2i \sin(ka)}{E + \gamma e^{ika}}.$$

Kar pomeni:

$$t = \frac{2i\gamma\gamma_0^2\sin(ka)}{e^{2ika}\left(E+\gamma e^{ika}\right)\left[(E-\epsilon_0)(E+\gamma e^{ika}) - 2\gamma_0^2\right]}.$$

Uporaba disperzijske relacije v obliki $E=-\gamma e^{ika}-\gamma e^{-ika}$ in krajšanje izraza z γ^2 da izraz iz enačbe 3.8 :

$$t(E) = \frac{2i\frac{\gamma_0^2}{\gamma}\sin(ka)}{(E-\epsilon_0) + 2\frac{\gamma_0^2}{\gamma}e^{ika}}$$

A.2 Dodana napetostna sonda

Mesta v sondi označujem z indeksom m. Z enakimi premisleki kot poprej rešitev iščem z nastavkom z leve vpadajočega vala:

$$\Psi = \begin{cases} 1 e^{ikna} + re^{-ikna} & n < 0 \\ \Psi_0 & n, m = 0 \\ t_{10} e^{ikna} & n > 0 \\ t_{20} e^{ikma} & m > 0 \end{cases}$$

Obravnavam sistem enačb okoli pike s tremi terminali, kjer so zaradi preglednosti s ψ_n oz. ψ_m mišljeni zgornji nastavki rešitve v vodnikih:

$$E\Psi_{0} = \epsilon_{0}\Psi_{0} - \gamma_{0}\psi_{n=1} - \gamma_{0}\psi_{n=-1} - \gamma_{2}\psi_{m=1}$$

$$E\psi_{n=1} = -\gamma\psi_{n=2} - \gamma_{0}\Psi_{0}$$

$$E\psi_{n=-1} = -\gamma\psi_{n=-2} - \gamma_{0}\Psi_{0}$$

$$E\psi_{m=1} = -\gamma\psi_{m=2} - \gamma_{2}\Psi_{0}$$

Enačbi za mesti levo in desno od pike sta enaki kot poprej in iz njih eliminiram Ψ_0 ter r:

$$\Psi_0 = \frac{(-1)}{\gamma_0} t_{10} e^{ika} (E + \gamma e^{ika}),$$

$$r = t_{10} - \frac{e^{-2ika} (E + \gamma e^{-ika})}{E + \gamma e^{ika}}.$$

Iz enačbe za prvo mesto v sondi (m = 1) dobim zvezo med t_{10} in t_{20} :

$$t_{20} = \frac{\gamma_2}{\gamma_0} t_{10}.$$

Enačbo za piko (n = 0, m = 0) reši naslednji postopek:

$$(E - \epsilon_0) \Psi_0 = -\gamma_0 \psi_{n=1} - \gamma_0 \psi_{n=-1} - \gamma_2 \psi_{m=1} / \leftarrow \{\Psi_0, \psi_{n=1}, \psi_{n=-1}, \psi_{m=1}\}$$

$$(E - \epsilon_0) \frac{(-1)}{\gamma_0} t_{10} e^{ika} (E + \gamma e^{ika}) = -\gamma_0 t_{10} e^{ika} - \gamma_0 (e^{-ika} + r e^{ika}) - \gamma_2 t_{20} e^{ika} / \leftarrow \{r, t_{20}\}$$

$$(E - \epsilon_0) \frac{(-1)}{\gamma_0} t_{10} e^{ika} (E + \gamma e^{ika}) = -\gamma_0 t_{10} e^{ika} - \gamma_0 \left(e^{-ika} + \left[t_{10} - \frac{e^{-2ika}(E + \gamma e^{-ika})}{E + \gamma e^{ika}} \right] e^{ika} \right) - \frac{\gamma_2^2}{\gamma_0} t_{10} e^{ika}$$

$$t_{10} e^{ika} \left[\frac{(-1)}{\gamma_0} (E - \epsilon_0) (E + \gamma e^{ika}) + \gamma_0 + \frac{\gamma_2^2}{\gamma_0} \right] = -\gamma_0 \left(e^{-ika} + t_{10} e^{ika} - e^{-ika} \frac{E + \gamma e^{-ika}}{E + \gamma e^{ika}} \right)$$

$$t_{10} e^{ika} \left[\frac{+1}{\gamma_0} (E - \epsilon_0) (E + \gamma e^{ika}) - 2\gamma_0 - \frac{\gamma_2^2}{\gamma_0} \right] = +\gamma_0 \gamma e^{-ika} \frac{2i \sin(ka)}{E + \gamma e^{ika}}$$

To pomeni:

$$t_{10} = \frac{2i\gamma\gamma_0^2\sin(ka)}{e^{2ika}(E+\gamma e^{ika})\left[(E-\epsilon_0)(E+\gamma e^{ika}) - 2\gamma_0^2 - \gamma_2^2\right]}.$$

Zopet lahko uporabim disperzijsko relacijo $E=-\gamma e^{ika}-\gamma e^{-ika}$ in okrajšam ulomek z γ^2 ter dobim izraz iz enačbe 3.14 :

$$t_{10} = \frac{2i\gamma_0^2/\gamma \sin(ka)}{(E - \epsilon_0) + (2\gamma_0^2 + \gamma_2^2)/\gamma e^{ika}}.$$

Stvarno kazalo

2DEG, glej dvodimenzionalni elektronski plin Aharonova in Bohma, pojav, 20 balističen, 18 kvantni točkovni stik, 14 Cayleyeva metoda, 36 dvodimenzionalni elektronski plin, 11, 13 efektivna masa, približek, 11, 15 energijska gostota toka, 17 Keldyshev formalizem, 46 Kirchoffov zakon, 19 koherenca, 11, 20 čas, 20 dolžina, 20 kvantna, 20 kvantna žica, 14 kvantna pika, 14 kvantni točkovni stik, 14 Landauer - Büttiker, formalizem, glej Landauerjeva formula Landauerjeva formula, 18, 19, 38 več terminalov, 19 Lorentzova funkcija, 28, 30 nanocevke, ogljikove, 15 nanofizika, 11 napetostna sonda, 11, 19, 21, 26 dekoherenčna, 44 prepustnost, 18 efektivna, 26, 31 pika brez sonde, 28 pika s sondo, 30 prevodnost, 18 resonančni

čas, 32

širina, 28, 32 resonančno tuneliranje, 23, 37

self energy, 34 sipalna matrika, 21, 34 sipalno stanje, 33, 34 spominski integral, 36

tesna vez, približek, 11, 16 transmisijska amplituda, 21 pika brez sonde, 28 pika s sondo, 30 transmisijska verjetnost, *glej* prepustnost