“Nonlinear PCA that learns the data score”:

Motivation
Unsupervised learning method card
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Result 1 — Geometry: The level sets align exactly with the score in the normal directions.
Result 2 — Dimensionality: Encoding dimensions beyond the data manifold are completely uninformative.

DPA AE WAE

1) PCA: linear, ordered components, mean reconstructions 1
only.

2) Autoencoder: non-linear encodings, no ordering, mean
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tendency for reconstruction.
3) Distributional Principal Autoencoder (DPA) [2]: non-linear,
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ordered components and distribution-faithful
reconstructions.
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Rotationally symmetric data: Left component has level sets tangential;
right component has level sets normal to the score. Together, they recover polar coordinates.

Figure 9 in [2]: DPA disentangles spatial and temporal dimensions for monthly (i.e., periodic) global precipitation data.

Key Results

The Distributional Principal Autoencoder (DPA) is an autoencoder variant recently introduced in Shen and Meinshausen [2] whose goal is distributionally-correct reconstruction of all the data mapped to a single value by the encoder
— the encoder level set. Thus, for a sample & ~ Py, an optimal encoder e* : R? — R*, and an optimal stochastic decoder d* padding the extra dimensions with noise e ~ N (0, I,_1), the following must hold:

The encoder-decoder optimization objective is based on the energy score:

P
(e*,d") € argmin Z]EX
e,d
@ k=0

d*(e*(z), €) £ Law(X | e*(X) = e*(x))

p
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where Py ... x) is the reconstructed distribution when using (only) the first & components of e.

Result 1: Geometry aligns exactly with the data score
Theorem

Result 2: Extra dimensions are completely uninformative
Definition (K'-parameterizable manifold & K'-best-approximating encoder)

For 3 = 2 and under relatively mild assumptions we have, for almost every sample X ~ Py, and encoder level set L..(x), the following balance A K -dimensional manifold is K'-parameterizable, K’ > K, if for the optimal encoder/decoder, the K'-term in the loss is globally the smallest among

equation for almost every y € L«(x):

all terms and among all encoder/decoder pairs:

2(y — c(X Lg|(e",d")| = min Lle, d
V(X)( | )) DZ*@) = Sdata(¥) DZ*(?J)» il ) e,d,k e, d
ATy — 2
Z(X) ly = (Xl If a solution (e*, d*) satisfying the above is also optimal among all dimension- K" encoders:
K/
where Sgataly 2 V, log Py (y) is the Stein score and D.(y) the encoder Jacobian at y, whenever the following quantities: the level-set (e*,d") € argmin Lyle, d|,
Y
center-of-mass: | ed 12,
. Do, L
o(X) = m / Y Prata(y) (e(y) — e(X)) dy, we denote it as the K'-best-approximating encoder.

and the level-set variance:
VOO = [ lly = X0 IE Paaaly) dlely) — ) dy

are finite, and the level-set mass Z(X) = | Pjua(2) d(e(z) — e(X)) dz > 0.

Consequences
1. Free lunch: Typically, data approximation/reconstruction and dimensionality reduction/disentanglement represent
a tradeoff. Example - 5-VAE:

argmin E, [Eqw(zm)[_ logpg(z | 2)] + \}; KL(qu(z | ) H ij(zj)) }
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reconstruction tradeoff
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disentanglement

Here, both main results hold simultaneously.
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Theorem (Extra dimensions are completely uninformative)
For a K'-parameterizable manifold, the dimensions (K" + 1,--- , p) of the K'-best-approximating encoder obey:

Py e: (x) = Pir e x), fork € K'+1,...,p].
Furthermore, these dimensions are conditionally independent of the data X, given the relevant components (ej, - - - , €5),
X L epr (X)) | el (X)), Viell,...,p— K.
or equivalently, they carry no additional information about the data distribution:
I(X: €0 i(X) | €1(X) =0, Vie[l,....p— K

2. Immediate Scientific impact: In chemical applications, the data is typically distributed by the Boltzmann distribution, whose score is proportional to the force, which is
recovered by the encoding:
y — c(X)

V(X
2 = lly — (X))

F(y) DL = 2 kgT D/ (y),

After encoding data from, e.g., the Muller-Brown potential, if one starts in a potential minimum and moves with the encoding, one recovers the Minimum Free Energy Path
(MFEP) - “least-energy-costly” transition between states. The encoding from raw data can hence be used to “guide” subsequent simulations for, e.g., protein folding.

Multitask learning: semi-supervised application
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Figure 1. MUller-Brown potential. Left: the MFEP approximation from using labeled data in [1]. Right: the first two components of the DPA - single encoding of unlabeled trajectories.

leban@umich.edu Exhibit Hall C,D,E, #3503


https://github.com/andleb/DistributionalAutoencodersScore
mailto:leban@umich.edu

	References

