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“Nonlinear PCA that learns the data score”: Result 1 — Geometry: The level sets align exactly with the score in the normal directions.

Result 2 — Dimensionality: Encoding dimensions beyond the data manifold are completely uninformative.

Motivation
Unsupervised learning method card
1) PCA: linear, ordered components, mean reconstructions

only.

2) Autoencoder: non-linear encodings, no ordering, mean

tendency for reconstruction.

3) Distributional Principal Autoencoder (DPA) [2]: non-linear,

ordered components and distribution-faithful

reconstructions.

Figure 9 in [2]: DPA disentangles spatial and temporal dimensions for monthly (i.e., periodic) global precipitation data.

Rotationally symmetric data: Left component has level sets tangential;

right component has level sets normal to the score. Together, they recover polar coordinates.

Key Results
The Distributional Principal Autoencoder (DPA) is an autoencoder variant recently introduced in Shen and Meinshausen [2] whose goal is distributionally-correct reconstruction of all the data mapped to a single value by the encoder

— the encoder level set. Thus, for a sample x ∼ Pdata, an optimal encoder e? : Rp → Rk, and an optimal stochastic decoder d? padding the extra dimensions with noise ε ∼ N (0, Ip−k), the following must hold:

d∗(e∗(x), ε
) d= Law(X | e?(X) = e?(x))

The encoder–decoder optimization objective is based on the energy score:

(e∗, d∗) ∈ arg min
e,d

p∑
k=0

EX
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[
‖X − Y ‖β

]]
− 1

2EX

[
E

Y,Y ′ iid∼ Pd,e1:k(X)

[
‖Y − Y ′‖β

]]] ∆=
p∑

k=0

Lk[e, d],

where Pd, e1:k(X) is the reconstructed distribution when using (only) the first k components of e.

Result 1: Geometry aligns exactlywith the data score
Theorem
For β = 2 and under relatively mild assumptions we have, for almost every sample X ∼ Pdata and encoder level set Le∗(X), the following balance

equation for almost every y ∈ Le∗(X):

2
(
y − c(X)

)
V (X)
Z(X)

− ‖y − c(X)‖2
D>

e∗(y) = sdata(y) D>
e∗(y),

where sdata(y) ∆= ∇y log Pdata(y) is the Stein score and De∗(y) the encoder Jacobian at y, whenever the following quantities: the level-set

center-of-mass:

c(X) = 1
Z(X)

∫
y Pdata(y) δ(e(y) − e(X)) dy,

and the level-set variance:

V (X) =
∫

‖y − c(X)‖2 Pdata(y) δ(e(y) − e(X)) dy

are finite, and the level-set mass Z(X) =
∫

Pdata(z) δ(e(z) − e(X)) dz > 0.

Result 2: Extra dimensions are completely uninformative
Definition (K ′-parameterizable manifold & K ′-best-approximating encoder)
A K-dimensional manifold is K ′-parameterizable, K ′ ≥ K , if for the optimal encoder/decoder, the K ′-term in the loss is globally the smallest among

all terms and among all encoder/decoder pairs:

LK ′[(e∗, d∗)] = min
e,d,k

Lk[e, d]

If a solution (e∗, d∗) satisfying the above is also optimal among all dimension-K ′ encoders:

(e∗, d∗) ∈ argmin
e,d

K ′∑
k=0

Lk[e, d],

we denote it as the K ′-best-approximating encoder.

Theorem (Extra dimensions are completely uninformative)
For a K ′-parameterizable manifold, the dimensions (K ′ + 1, · · · , p) of the K ′-best-approximating encoder obey:

Pd∗,e∗
1:k(X) = Pd∗,e∗

1:K′(X), for k ∈ [K ′ + 1, . . . , p].
Furthermore, these dimensions are conditionally independent of the data X , given the relevant components (e∗

1, · · · , e∗
K ′),

X ⊥⊥ e∗
K ′+i(X) | e∗

1:K ′(X), ∀i ∈ [1, . . . , p − K ′].
or equivalently, they carry no additional information about the data distribution:

I (X ; e∗
K ′+i(X) | e∗

1:K ′(X)) = 0, ∀i ∈ [1, . . . , p − K ′],

Consequences
1. Free lunch: Typically, data approximation/reconstruction and dimensionality reduction/disentanglement represent

a tradeoff. Example – β-VAE:

arg min
θ,ϕ

Epdata(x)

[
Eqϕ(z|x)[− log pθ(x | z)]︸ ︷︷ ︸

reconstruction

+ β︸︷︷︸
tradeoff

KL
(

qϕ(z | x)
∥∥ ∏

j p(zj)
)

︸ ︷︷ ︸
disentanglement

]
Here, both main results hold simultaneously.

References
[1] L. Bonati, E. Trizio, A. Rizzi, and M. Parrinello. A unified framework for machine learning collective variables for enhanced sampling simulations. The Journal of

Chemical Physics, 159.

[2] X. Shen and N. Meinshausen. Distributional Principal Autoencoders, Apr. 2024.

2. Immediate Scientific impact: In chemical applications, the data is typically distributed by the Boltzmann distribution, whose score is proportional to the force, which is

recovered by the encoding:

~F (y) D>
e∗ = 2 kBT

y − c(X)
V (X)
Z(X) − ‖y − c(X)‖2

D>
e∗(y),

After encoding data from, e.g., the Müller-Brown potential, if one starts in a potential minimum and moves with the encoding, one recovers the Minimum Free Energy Path

(MFEP) – “least-energy-costly” transition between states. The encoding from raw data can hence be used to “guide” subsequent simulations for, e.g., protein folding.

Figure 1. Müller-Brown potential. Left: the MFEP approximation from using labeled data in [1]. Right: the first two components of the DPA – single encoding of unlabeled trajectories.
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