

Distributional Autoencoders Know the Score

Andrey Leban

Department of Statistics, University of Michigan

“Nonlinear PCA that learns the data score”:

Result 1 – Geometry: The level sets align exactly with the score in the normal directions.

Result 2 – Dimensionality: Encoding dimensions beyond the data manifold are completely uninformative.

Motivation

Unsupervised learning method card

- 1) PCA: linear, ordered components, mean reconstructions only.
- 2) Autoencoder: non-linear encodings, no ordering, mean tendency for reconstruction.
- 3) Distributional Principal Autoencoder (DPA) [2]: non-linear, ordered components and distribution-faithful reconstructions.

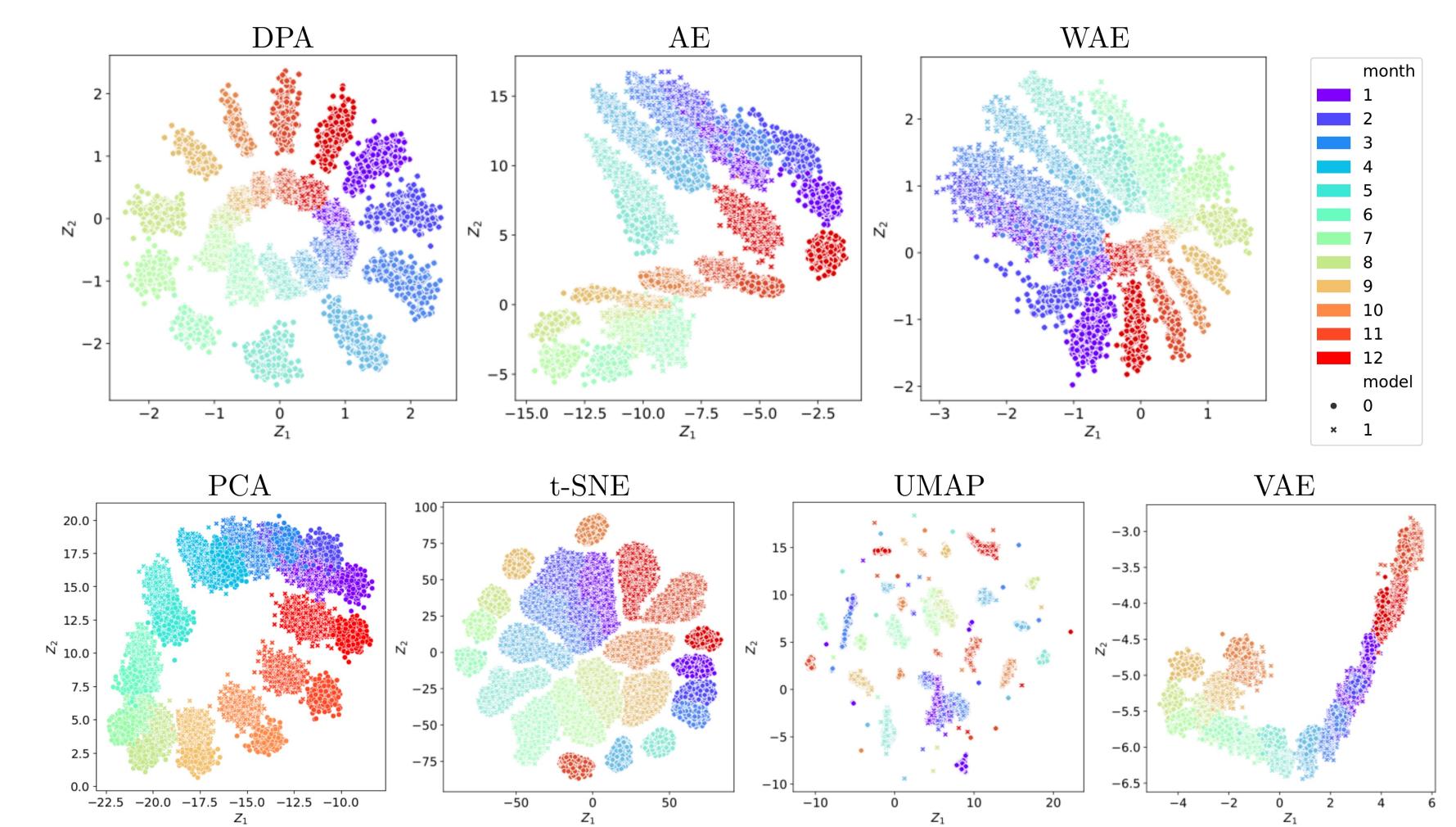
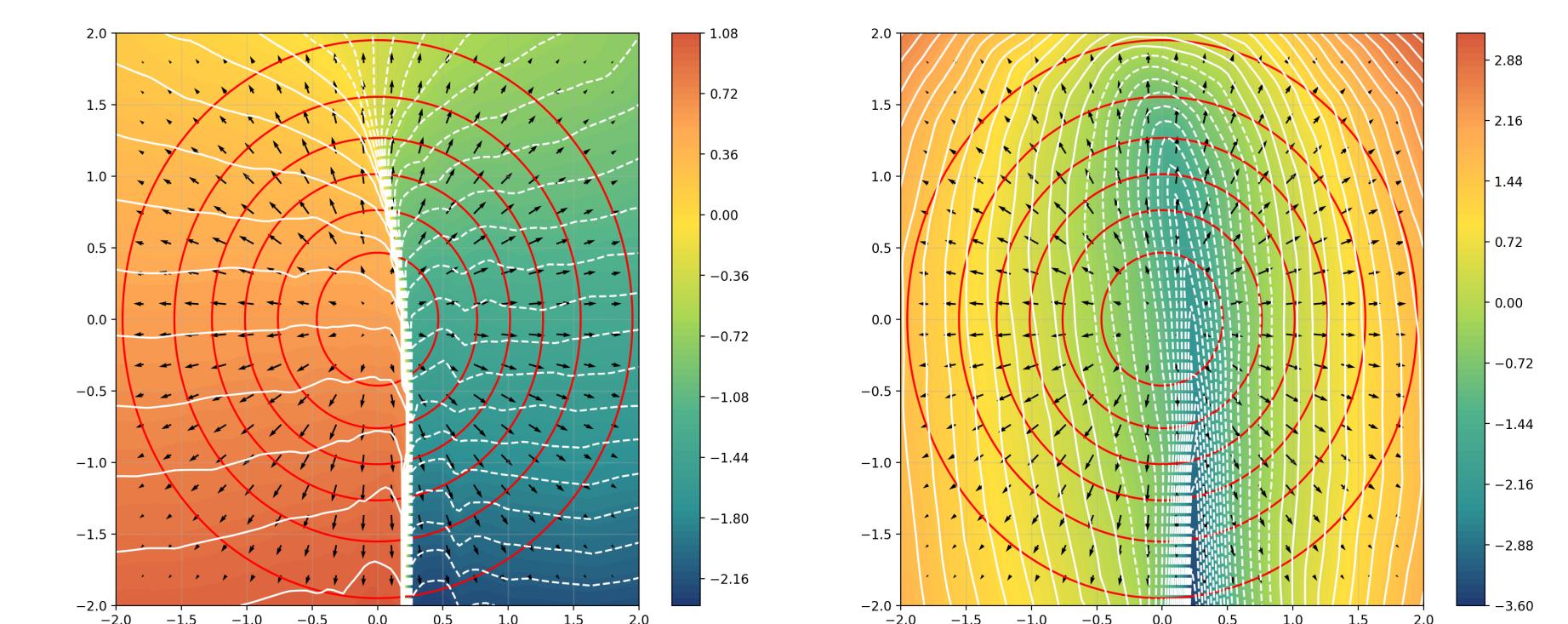


Figure 9 in [2]: DPA disentangles spatial and temporal dimensions for monthly (i.e., periodic) global precipitation data.



Rotationally symmetric data: Left component has level sets **tangential**; right component has level sets **normal** to the score. Together, they recover polar coordinates.

Key Results

The Distributional Principal Autoencoder (DPA) is an autoencoder variant recently introduced in Shen and Meinshausen [2] whose goal is **distributionally-correct reconstruction** of all the data mapped to a single value by the encoder – the encoder level set. Thus, for a sample $x \sim P_{\text{data}}$, an optimal encoder $e^* : \mathbb{R}^p \rightarrow \mathbb{R}^k$, and an optimal stochastic decoder d^* padding the extra dimensions with noise $\epsilon \sim \mathcal{N}(0, I_{p-k})$, the following must hold:

$$d^*(e^*(x), \epsilon) \stackrel{d}{=} \text{Law}(X \mid e^*(X) = e^*(x))$$

The encoder-decoder optimization objective is based on the **energy score**:

$$(e^*, d^*) \in \arg \min_{e, d} \sum_{k=0}^p \mathbb{E}_X \left[\mathbb{E}_{Y \sim P_{d,e_{1:k}(X)}} [\|X - Y\|^\beta] \right] - \frac{1}{2} \mathbb{E}_X \left[\mathbb{E}_{Y, Y' \sim P_{d,e_{1:k}(X)}} [\|Y - Y'\|^\beta] \right] \triangleq \sum_{k=0}^p L_k[e, d],$$

where $P_{d, e_{1:k}(X)}$ is the reconstructed distribution when using (only) the first k components of e .

Result 1: Geometry aligns exactly with the data score

Theorem

For $\beta = 2$ and under relatively mild assumptions we have, for almost every sample $X \sim P_{\text{data}}$ and encoder level set $\mathcal{L}_{e^*(X)}$, the following balance equation for almost every $y \in \mathcal{L}_{e^*(X)}$:

$$\frac{2(y - c(X))}{V(X)} D_{e^*}^\top(y) = s_{\text{data}}(y) D_{e^*}^\top(y),$$

where $s_{\text{data}}(y) \triangleq \nabla_y \log P_{\text{data}}(y)$ is the Stein score and $D_{e^*}(y)$ the encoder Jacobian at y , whenever the following quantities: the **level-set center-of-mass**:

$$c(X) = \frac{1}{Z(X)} \int y P_{\text{data}}(y) \delta(e(y) - e(X)) dy,$$

and the **level-set variance**:

$$V(X) = \int \|y - c(X)\|^2 P_{\text{data}}(y) \delta(e(y) - e(X)) dy$$

are finite, and the **level-set mass** $Z(X) = \int P_{\text{data}}(z) \delta(e(z) - e(X)) dz > 0$.

Result 2: Extra dimensions are completely uninformative

Definition (K' -parameterizable manifold & K' -best-approximating encoder)

A K -dimensional manifold is K' -parameterizable, $K' \geq K$, if for the optimal encoder/decoder, the K' -term in the loss is globally the smallest among all terms and among all encoder/decoder pairs:

$$L_{K'}[(e^*, d^*)] = \min_{e, d, k} L_k[e, d]$$

If a solution (e^*, d^*) satisfying the above is also optimal among all dimension- K' encoders:

$$(e^*, d^*) \in \arg \min_{e, d} \sum_{k=0}^{K'} L_k[e, d],$$

we denote it as the K' -best-approximating encoder.

Theorem (Extra dimensions are completely uninformative)

For a K' -parameterizable manifold, the dimensions $(K' + 1, \dots, p)$ of the K' -best-approximating encoder obey:

$$P_{d^*, e_{1:k}^*(X)} = P_{d^*, e_{1:K'}^*(X)}, \text{ for } k \in [K' + 1, \dots, p].$$

Furthermore, these dimensions are conditionally independent of the data X , given the relevant components $(e_1^*, \dots, e_{K'}^*)$:

$$X \perp\!\!\!\perp e_{K'+i}^*(X) \mid e_{1:K'}^*(X), \quad \forall i \in [1, \dots, p - K'].$$

or equivalently, they carry no additional information about the data distribution:

$$I(X; e_{K'+i}^*(X) \mid e_{1:K'}^*(X)) = 0, \quad \forall i \in [1, \dots, p - K'].$$

Consequences

1. **Free lunch:** Typically, **data approximation/reconstruction** and **dimensionality reduction/disentanglement** represent a **tradeoff**. Example – β -VAE:

$$\arg \min_{\theta, \varphi} \mathbb{E}_{p_{\text{data}}(x)} \left[\underbrace{\mathbb{E}_{q_{\varphi}(z|x)} [-\log p_{\theta}(x|z)]}_{\text{reconstruction}} + \underbrace{\beta \text{KL}(q_{\varphi}(z|x) \parallel \prod_j p(z_j))}_{\text{tradeoff}} \right]$$

Here, both main results hold **simultaneously**.

References

[1] L. Bonati, E. Trizio, A. Rizzi, and M. Parrinello. A unified framework for machine learning collective variables for enhanced sampling simulations. *The Journal of Chemical Physics*, 159.

[2] X. Shen and N. Meinshausen. Distributional Principal Autoencoders, Apr. 2024.

2. **Immediate Scientific impact:** In chemical applications, the data is typically distributed by the **Boltzmann distribution**, whose score is proportional to the force, which is recovered by the encoding:

$$\vec{F}(y) D_{e^*}^\top = 2 k_B T \frac{y - c(X)}{\frac{V(X)}{Z(X)} - \|y - c(X)\|^2} D_{e^*}^\top(y),$$

After encoding data from, e.g., the Müller-Brown potential, if one starts in a potential minimum and moves with the encoding, one recovers the **Minimum Free Energy Path (MFEP)** – “least-energy-costly” transition between states. The encoding from raw data can hence be used to “guide” subsequent simulations for, e.g., protein folding.

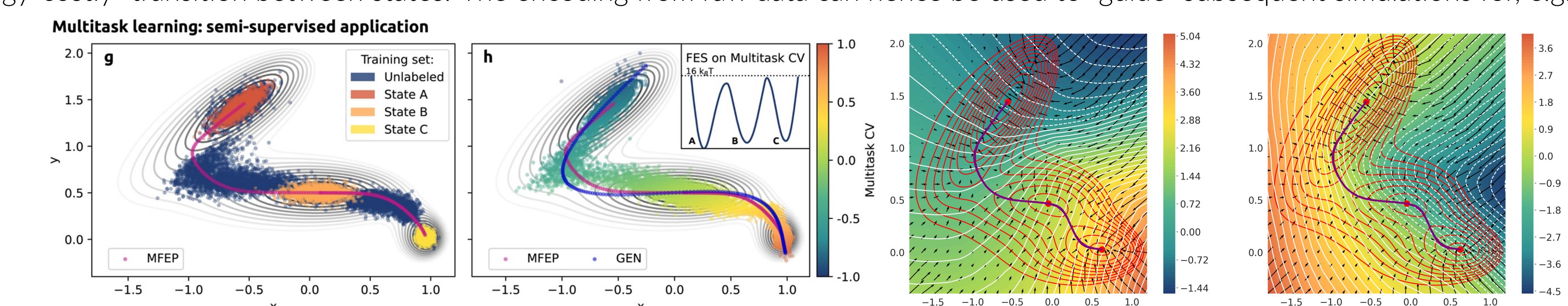


Figure 1. Müller-Brown potential. Left: the MFEP approximation from using labeled data in [1]. Right: the first two components of the DPA – single encoding of unlabeled trajectories.