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Introduction
The Distributional Principal Autoencoder (DPA) is an autoencoder variant recently introduced in Shen and Meinshausen [2] which uses the

energy score. The goal is distributionally-correct reconstruction of all the data mapped to a single value by the encoder (equivalently, of the

encoder level set).

Definition (Oracle reconstructed distribution – ORD)
For a given encoder e : Rp → Rk and a sample x ∼ Pdata, the oracle reconstructed distribution – ORD –P ∗

e,x, is the conditional distribution of X given

e(X) = e(x):
(X | e(X) = e(x)) ∼ P ∗

e,x.

For an optimal stochastic decoder d∗ padding the extra dimensions with noise ε ∼ N (0, Ip−k), we have:

d∗(e∗(x), ε
)

∼ P ∗
e∗,x.

The encoder–decoder optimization objective is

(e∗, d∗) ∈ arg min
e,d

p∑
k=0
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[
‖X − Y ‖β]] − 1

2EX

[
E

Y,Y ′ iid∼ Pd,e1:k(X)

[
‖Y − Y ′‖β]]] ∆=

p∑
k=0

Lk[e, d],

where Pd, e1:k(X) is the distribution reconstructed when using the first k components of e.

Unsupervised learning method card
1) PCA: linear, ordered components, mean reconstructions only.

2) AE: non-linear encodings, no ordering, mean tendency for reconstruction.

3) DPA: non-linear, ordered components and distribution-faithful reconstructions.

Figure 9 in [2]: DPA disentangles spatial and temporal dimensions for monthly (i.e., periodic) global precipitation data.

Key Results
Nonlinear PCA that learns the data score.

The level sets align with the score in the normal directions.

Theorem (Geometry aligns exactly with the data score)
For β = 2 and under relatively mild assumptions we have, for almost every sample X ∼ Pdata and encoder level set Le∗(X), the
following balance equation for almost every y ∈ Le∗(X):

2
(
y − c(X)

)
V (X)
Z(X)

− ‖y − c(X)‖2
D>

e∗(y) = sdata(y) D>
e∗(y),

where sdata(y) ∆= ∇y log Pdata(y) is the Stein score and De∗(y) the encoder Jacobian at y, whenever the following quantities: the

level-set center-of-mass:

c(X) = 1
Z(X)

∫
y Pdata(y) δ(e(y) − e(X)) dy,

and the level-set variance:

V (X) =
∫

‖y − c(X)‖2 Pdata(y) δ(e(y) − e(X)) dy.

are finite and the level-set mass Z(X) =
∫

Pdata(z) δ(e(z) − e(X)) dz > 0.

The encoding dimensions beyond the manifold are completely uninformative.

Definition (K ′-parameterizable manifold & K ′-best-approximating encoder)
A K-dimensional manifold is K ′-parameterizable, K ′ ≥ K , if for the optimal encoder/decoder, the K ′-term in the loss is globally the

smallest among all terms and among all encoder/decoder pairs:

LK ′[(e∗, d∗)] = min
e,d,k

Lk[e, d]

If a solution (e∗, d∗) satisfying the above is also optimal among all dimension-K ′ encoders:

(e∗, d∗) ∈ argmin
e,d

K ′∑
k=0

Lk[e, d],

we denote it as the K ′-best-approximating encoder.

Theorem (Extra dimensions are completely uninformative)
For a K ′-parameterizable manifold, the dimensions (K ′ + 1, · · · , p) of the K ′-best-approximating encoder obey:

Pd∗,e∗
1:k(X) = Pd∗,e∗

1:K′(X), for k ∈ [K ′ + 1, . . . , p].

Furthermore, these dimensions are conditionally independent of the data X , given the relevant components (e∗
1, · · · , e∗

K ′),

X ⊥⊥ e∗
K ′+i(X) | e∗

1:K ′(X), ∀i ∈ [1, . . . , p − K ′].
or equivalently, they carry no additional information about the data distribution:

I
(

X ; e∗
K ′+i(X) | e∗

1:K ′(X)
)

= 0, ∀i ∈ [1, . . . , p − K ′],

Consequences
1) Free lunch: Typically, data approximation and dimensionality reduction represent a tradeoff. Example – β-VAE:

arg min
θ,ϕ

Epdata(x)
[
Eqϕ(z|x)[− log pθ(x | z)]︸ ︷︷ ︸

reconstruction

+ β KL
(

qϕ(z | x)
∥∥ ∏

j p(zj)
)

︸ ︷︷ ︸
disentanglement

]

2) Immediate impact for Science: In chemical applications, the data is typically distributed by the Boltzmann distribution,

which means that the encoding recovers the force field:

~F (y) D>
e∗ = 2 kBT

y − c(X)
V (X)
Z(X) − ‖y − c(X)‖2

D>
e∗(y),

Thus, if one starts in a potential minimum and moves with the encoding, one recovers the Minimum Free Energy Path

(MFEP) – “least-energy-costly” transition between states. Thus the encoding from raw data can be used to “guide”

subsequent simulations for, e.g., protein folding.

Figure 1. Müller-Brown potential. Left: the MFEP approximation from using labeled data in [1]. Right: the first two components of the DPA – single

encoding of unlabeled trajectories.
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