

Distributional Autoencoders Know the Score

(NeurIPS 2025)

Andrej Leban

Department of Statistics, University of Michigan

Introduction

The Distributional Principal Autoencoder (DPA) is an autoencoder variant recently introduced in Shen and Meinshausen [2] which uses the energy score. The goal is **distributionally-correct reconstruction** of *all the data mapped to a single value by the encoder* (equivalently, of the encoder level set).

Definition (Oracle reconstructed distribution – ORD)

For a given encoder $e : \mathbb{R}^p \rightarrow \mathbb{R}^k$ and a sample $x \sim P_{\text{data}}$, the oracle reconstructed distribution – ORD – $P_{e,x}^*$, is the conditional distribution of X given $e(X) = e(x)$:

$$(X \mid e(X) = e(x)) \sim P_{e,x}^*.$$

For an optimal stochastic decoder d^* padding the extra dimensions with noise $\epsilon \sim \mathcal{N}(0, I_{p-k})$, we have:

$$d^*(e^*(x), \epsilon) \sim P_{e^*,x}^*.$$

The encoder-decoder optimization objective is

$$(e^*, d^*) \in \arg \min_{e, d} \sum_{k=0}^p \mathbb{E}_X \left[\mathbb{E}_{Y \sim P_{d,e_{1:k}(X)}} [\|X - Y\|^\beta] \right] - \frac{1}{2} \mathbb{E}_X \left[\mathbb{E}_{Y, Y' \sim P_{d,e_{1:k}(X)}} [\|Y - Y'\|^\beta] \right] \triangleq \sum_{k=0}^p L_k[e, d],$$

where $P_{d,e_{1:k}(X)}$ is the distribution reconstructed when using the first k components of e .

Key Results

Nonlinear PCA that learns the data score.

The level sets align with the score in the normal directions.

Theorem (Geometry aligns exactly with the data score)

For $\beta = 2$ and under relatively mild assumptions we have, for almost every sample $X \sim P_{\text{data}}$ and encoder level set $\mathcal{L}_{e^*(X)}$, the following balance equation for almost every $y \in \mathcal{L}_{e^*(X)}$:

$$\frac{2(y - c(X))}{V(X) - \|y - c(X)\|^2} D_{e^*}^\top(y) = s_{\text{data}}(y) D_{e^*}^\top(y),$$

where $s_{\text{data}}(y) \triangleq \nabla_y \log P_{\text{data}}(y)$ is the Stein score and $D_{e^*}(y)$ the encoder Jacobian at y , whenever the following quantities: the **level-set center-of-mass**:

$$c(X) = \frac{1}{Z(X)} \int y P_{\text{data}}(y) \delta(e(y) - e(X)) dy,$$

and the **level-set variance**:

$$V(X) = \int \|y - c(X)\|^2 P_{\text{data}}(y) \delta(e(y) - e(X)) dy.$$

are finite and the **level-set mass** $Z(X) = \int P_{\text{data}}(z) \delta(e(z) - e(X)) dz > 0$.

Unsupervised learning method card

- 1) **PCA**: linear, ordered components, mean reconstructions only.
- 2) **AE**: non-linear encodings, no ordering, mean *tendency* for reconstruction.
- 3) **DPA**: non-linear, ordered components **and** distribution-faithful reconstructions.

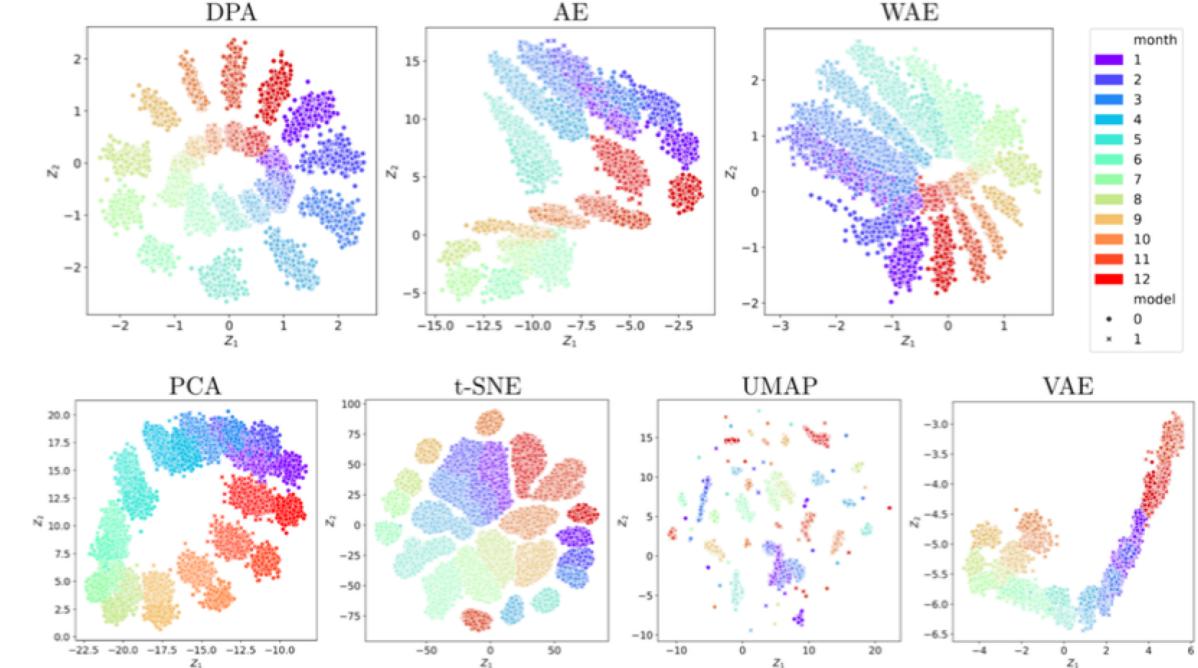


Figure 9 in [2]: DPA disentangles spatial and temporal dimensions for monthly (i.e., periodic) global precipitation data.

Nonlinear PCA that learns the data score.

The encoding dimensions beyond the manifold are completely uninformative.

Definition (K' -parameterizable manifold & K' -best-approximating encoder)

A K -dimensional manifold is K' -parameterizable, $K' \geq K$, if for the optimal encoder/decoder, the K' -term in the loss is globally the smallest among all terms and among all encoder/decoder pairs:

$$L_{K'}[(e^*, d^*)] = \min_{e, d, k} L_k[e, d]$$

If a solution (e^*, d^*) satisfying the above is also optimal among all dimension- K' encoders:

$$(e^*, d^*) \in \arg \min_{e, d} \sum_{k=0}^{K'} L_k[e, d],$$

we denote it as the K' -best-approximating encoder.

Theorem (Extra dimensions are completely uninformative)

For a K' -parameterizable manifold, the dimensions $(K' + 1, \dots, p)$ of the K' -best-approximating encoder obey:

$$P_{d^*, e_{1:k}^*(X)} = P_{d^*, e_{1,K'}^*(X)}, \text{ for } k \in [K' + 1, \dots, p].$$

Furthermore, these dimensions are conditionally independent of the data X , given the relevant components $(e_1^*, \dots, e_{K'}^*)$,

$$X \perp\!\!\!\perp e_{K'+i}^*(X) \mid e_{1:K'}^*(X), \quad \forall i \in [1, \dots, p - K'].$$

or equivalently, they carry no additional information about the data distribution:

$$I(X; e_{K'+i}^*(X) \mid e_{1:K'}^*(X)) = 0, \quad \forall i \in [1, \dots, p - K'],$$

Consequences

- 1) **Free lunch**: Typically, data approximation and dimensionality reduction represent a **tradeoff**. Example – β -VAE:

$$\arg \min_{\theta, \varphi} \mathbb{E}_{p_{\text{data}}(x)} \left[\underbrace{\mathbb{E}_{q_\varphi(z|x)} [-\log p_\theta(x \mid z)]}_{\text{reconstruction}} + \beta \underbrace{\text{KL}(q_\varphi(z \mid x) \parallel \prod_j p(z_j))}_{\text{disentanglement}} \right]$$

- 2) **Immediate impact for Science**: In chemical applications, the data is typically distributed by the Boltzmann distribution, which means that the encoding **recovers the force field**:

$$\vec{F}(y) D_{e^*}^\top = 2 k_B T \frac{y - c(X)}{V(X) - \|y - c(X)\|^2} D_{e^*}^\top(y),$$

Thus, if one starts in a potential minimum and moves with the encoding, one recovers the Minimum Free Energy Path (MFEP) – “least-energy-costly” transition between states. Thus the encoding from raw data can be used to “guide” subsequent simulations for, e.g., *protein folding*.

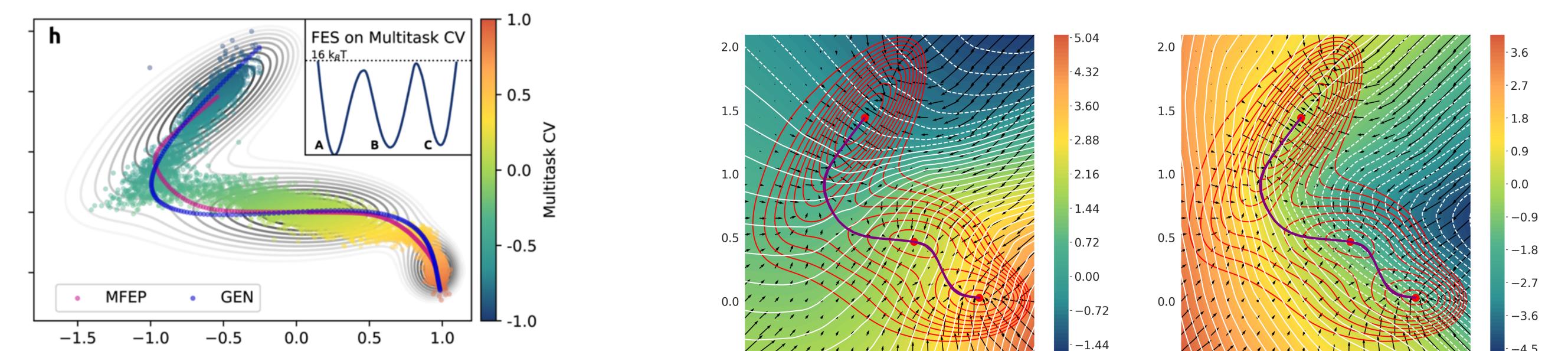


Figure 1. Müller-Brown potential. Left: the MFEP approximation from using **labeled** data in [1]. Right: the first two components of the DPA – single encoding of **unlabeled** trajectories.

References

- [1] L. Bonati, E. Trizzi, A. Rizzi, and M. Parrinello. A unified framework for machine learning collective variables for enhanced sampling simulations. *The Journal of Chemical Physics*, 159.
- [2] X. Shen and N. Meinshausen. Distributional Principal Autoencoders, Apr. 2024.