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ABSTRACT

Translation Quality Assessment (TQA) is a process conducted by human translators and is widely
used, both for estimating the performance of (increasingly used) Machine Translation, and for finding
an agreement between translation providers and their customers. While translation scholars are
aware of the importance of having a reliable way to conduct the TQA process, it seems that there
is limited literature that tackles the issue of reliability with a quantitative approach. In this work,
we consider the TQA as a complex process from the point of view of physics of complex systems
and approach the reliability issue from the Bayesian paradigm. Using a dataset of translation quality
evaluations (in the form of error annotations), produced entirely by the Professional Translation
Service Provider Translated SRL, we compare two Bayesian models that parameterise the following
features involved in the TQA process: the translation difficulty, the characteristics of the translators
involved in producing the translation, and of those assessing its quality - the reviewers. We validate
the models in an unsupervised setting and show that it is possible to get meaningful insights into
translators even with just one review per translation; subsequently, we extract information like
translators’ skills and reviewers’ strictness, as well as their consistency in their respective roles. Using
this, we show that the reliability of reviewers cannot be taken for granted even in the case of expert
translators: a translator’s expertise can induce a cognitive bias when reviewing a translation produced
by another translator. The most expert translators, however, are characterised by the highest level of
consistency, both in translating and in assessing the translation quality.

1 Introduction

Translation Quality Assessment (TQA) is a field within Translation Studies (TS) - an interdisciplinary paradigm dealing
with the systematic study of the theory, description, and application of translation (Holmes, 1988) - that focuses on
the evaluation of translated text quality, both in the case of a human translator (Human Translation - HT), and when
artificial intelligence is used (Machine Translation - MT). Translation is clearly a complex process, involving several
linguistic and extra-linguistic variables; the latter are associated with texts, translators, languages, and the environment.
This complexity, unsurprisingly, influences the difficulty of estimating the quality of a translation’s final result (Castilho
et al., 2018). For this reason, translation quality has been a central topic of research in the field of translation studies
for decades (Holmes, 1988; Nida, 1964). One of the main issues raised by translation scholars is the lack of an
objective method of estimating translation quality. Regarding this point, House stated in 1997: "evaluating the quality
of a translation presupposes a theory of translation. Thus different views of translation lead to different concepts of
translational quality, and hence different ways of assessing it." (House, 1997)

Together with the complexity of TQA, the need of having a reliable way to assess translation quality has attracted the
attention of many researchers. Such necessity stems from both academic research and the interests of industry, which
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needs a reliable way to assess the quality of the translations produced. In the case of academic research, it has to be
remarked that TQA is crucial for the evaluation of MT systems. In a world where MT usage is becoming increasingly
high (Lagarda et al., 2015; Way, 2018), the growing effort put into the improvement of MT systems has given rise to a
need for reliable metrics with which one could evaluate the changes in performance and compare different MT engines.
For example, assessing translation quality with unreliable methods can lead to dangerous and erroneous claims about
actual MT performance (Toral et al., 2018). Despite this, it is not common practice to investigate the reliability of the
methods used in the TQA process (Han, 2020) and the actual skills of the translators involved. With this work, we
therefore aim to provide a method to trace translators’ typical behaviour, hopefully leading to a deeper understanding of
the TQA process that assessed the quality of a translation.

From the point of view of the translation industry, it is clear that Professional Translation Service Providers - the
companies that provide professional linguistic translations - need to evaluate the translators engaged. Additionally, they
have to communicate with transparency the quality of the service provided to their customers in order to be competitive
(Martínez, 2014). These needs cannot be fulfilled if the reliability of the TQA process is not validated.

In the task of evaluating MT outputs, the common practice is to use human translators in making the evaluations. Such
human assessment is seldom verified (Castilho et al., 2018), especially since the linguists1 engaged are usually expert
translators.

The intrinsic subjectivity of translation raises the main concern about the quality of its evaluation by humans (Zehnalová,
2013): in the cited case, an investigation into the TQA evaluation revealed that the agreement between evaluators can be
so low that a further step of reconciling the evaluations is needed in order to have a reliable assessment. This is the case
of Daems et al. (2013), who created the gold standard for TQA evaluation by asking two expert translators to make an
assessment and subsequently reconciling the poor agreement (only 38% of the annotated errors were shared between the
two evaluations) by letting the translators examine each other’s annotations. To a physicist, such subjectivity naturally
brings forth the concept of variance. We can, therefore, ask ourselves: how many different translations would we have if
we asked a group of linguists (even experts) to independently translate a sentence (or to evaluate a translated sentence)?
Assuming that they could not remember the previous time they worked on it, how many times would the same translator
produce the exact same translation in repeat translations of a sentence?

Despite the intrinsic subjectivity of human translation, we can strive to increase the reliability of the quality assessment
by maximising the agreement between different evaluators, since this can be seen as a measure of objectivity of the
evaluation. One step towards greater objectivity (White et al., 1994; Yildiz, 2020) is to identify and minimise the
sources of variability in a translation’s evaluation process. If we knew, for instance, that an evaluator is usually strict in
assessing a translation’s quality, we could adjust their assessment in order to remove the subjective component. The
recognition for the necessity of subjectivity "removal" (Han, 2020; Rivera-Trigueros, 2021; Turchi et al., 2014) has
opened a research area that, to the best of our knowledge, is still quite young.

Given the complexity of the TQA task, there have been few attempts to overcome this subjectivity: Turchi et al. (2014),
in the task of assessing the quality of MT outputs, replaced human TQA with an automated system that evaluated the
quality of a translated sentence by looking directly at the similarity between the MT output and its human-edited version,
discarding the human error annotations. This approach of using automated metrics is useful because of the evident
gain in terms of time and money spent. However, it still does not represent a valid alternative to human assessment
because of its poor flexibility and reliability (Chatzikoumi, 2020). As we have instead seen, Daems et al. (2013) let the
translators find a consensus by examining each other’s annotations, overcoming their low agreement in independent
evaluations. This is, of course, an interesting and reliable way to increase the objectivity of the evaluation, but can
be unfeasible in practice when the evaluation is conducted by more than two translators. Additionally, it is obviously
inapplicable in the case of a single translator.

Our work is an attempt to provide a reliable quality estimate through the application of complex systems methods, in
particular within a Bayesian probabilistic framework. Using this, we model translation subjectivity sources and remove
their contributions from the final quality score, gaining insights into the factors that affected the result and maximising
the objectivity of the evaluation. Such methods are expected to detect more complex patterns by looking simultaneously
at all the agents involved in the process of quality assessment - such as the linguist who produced the translation, the
reviewer who evaluated its quality, the source text of the translation, etc. - across all the available co-occurrences in the
dataset.

Furthermore, we would like to propose a general framework applicable not only to Translation Quality Assessment but
also to other fields, wherever the aggregation of subjective quantitative judgements is required, e.g. in medicine, where

1In this article, we use the term "linguist" to encompass professional translators acting as both the first-pass translator of a
document, and the (usually more senior) reviewer, also a professional translator.
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there could be a lack of consensus in physicians’ diagnoses (Jauniaux et al., 2018; Rhee et al., 2016; Tacchella et al.,
2018).

2 Dataset

Our dataset is retrieved entirely from Translated SRL’s2 database. The data are created through a TQA process
conducted by expert human reviewers that produce one quality score for every translation job evaluated. The reviewer
evaluates the translation on a Computer-Assisted Translation (CAT) tool (MateCat3), i.e. a tool with a user interface
that displays the translated document split into segments, contrasting the source text segments with the corresponding
segments produced by the translator. Besides editing the translation, the reviewer can also annotate the errors they finds.
The errors found can be classified into 4 categories (Linguistic, Accuracy, Style, Client Guidelines) and 4 severities
(Preferential, Repetition, Minor, Major). The eventual quantitative evaluation of the entire document is the weighted
sum of the errors found, normalised by the word count of the source document, with the weights given by the error
severity: 1 for the minor errors, and 2 for the major ones (all the others are weighted with 0). The obtained score is then
multiplied by 1000 for readability purposes. We thus obtain our quality score, Errors Per Thousand (EPT) since it is the
number of errors per thousand words:

EPT = 1000
m+ 2M

w
(1)

where we used m and M respectively for the counts of the minor and major errors found across all the segments in the
translated document, and w represents the total number of words in the document.

In this work, all absolute EPT values shown in plots have been rescaled by dividing them by their maximum value and
languages are anonymised for data protection reasons.

(a) Histogram of the documents’ distribution according to their
word count.

(b) Histogram of the documents’ distribution according to their
EPT score. The high peak corresponds to the "perfect trans-
lations" (EPT = 0). EPT values have been rescaled for data
protection reasons.

Figure 1: Distributions of the documents in the dataset according to the number of words and their EPT score.

We have collected more than 74k reviewed translation jobs, all with US English as the source language and with 57
languages as the target, involving more than 300 translators and reviewers. All the documents have a number of words
300 < w < 3500. The resulting distributions of translation jobs by number of words and by EPT score are shown in
Figure 1.

2.1 Glut of perfect translations

As can be noticed in Figure 1b, there is a relatively large fraction (∼ 20%) of translations for which the reviewers did
not annotate any weighted error: we refer to these cases as "perfect translations" or "zeros". This peak seems to be
detached from the rest of the distribution.

One could argue that this abundance of zeros can be caused solely by short documents, for which there is a smaller
probability to find an error: the peak could be due to a finite-size effect in the evaluation of the translated documents.

2https://translated.com
3https://www.matecat.com/
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(a) Percentage of translation jobs with EPT = 0 by the
quartiles of the word count distribution separated by
word count w

(b) Distribution according to the EPT score for the last
quartile of the word count distribution. EPT values have
been rescaled for data protection reasons.

Figure 2: Glut of perfect translations. Even for the longest documents there is a not negligible amount of perfect
translations (EPT = 0).

To check if the finite-size effect was the only reason for this glut of zeros, we checked the distribution of EPT for
longer documents: we divided our dataset into four subgroups, using the quartiles of the distribution of documents per
number of words (see fig.1a) as the separating criterion. However, plotting the EPT distribution for the last quartile only
(documents with a number of words 2028 ≤ w ≤ 3500) reveals a similar peak at EPT = 0 (see fig.2b).

Although the peak corresponding to the perfect translations is present also in longer documents, the percentage of
zeros actually decreases with increasing document size (see Figure 2a), meaning that the finite-size effect becomes less
evident for longer translation jobs (and so it is true that part of this effect can be explained with the document lengths).
On the other hand, the persistent presence of the peak at EPT = 0 also for longest documents (see Figure 2b) drives us
to avoid explaining the glut of zeros with just the finite-size effect, making us think about some other significant source
of perfect translations. We will give our interpretations of this phenomenon in subsection 3.2.

3 Models

In our approach to model the TQA process, we consider the EPT score associated with a translation job j as a
measurement of the translation’s latent real quality score, which we call qj . We showcase two models that aim to
fit the observed data by taking into account the parameters that are expected to significantly determine the outcome
of the translation quality measurement, such as the intrinsic difficulty of the translation job and the translator’s and
reviewer’s characteristics. By employing a Bayesian probabilistic approach, we characterise translators (only with the
Hurdle model, see 3.2) and reviewers (both models) by considering them as the sources of error affecting the EPT
measurements. This allows us to assess their reliability in light of an optimal set of parameters that best describes the
observed EPT measurements, given our prior knowledge about the TQA process.

The optimal set of parameters is found by training the models via Markov Chain Monte Carlo (MCMC) (Gelman et al.,
1995). With MCMC we infer the shape of the posterior p(Θ|E) i.e. the probability that Θ is the set of parameters that
best fit the observed EPT data, according to our prior knowledge and the model chosen. Following Bayes’ theorem,
such posterior probability is proportional to the product between the likelihood and prior probabilities:

p(Θ|E)︸ ︷︷ ︸
posterior

∝ p(E|Θ)︸ ︷︷ ︸
likelihood

p(Θ)︸ ︷︷ ︸
prior

(2)

The two models we present are encoded by the specification of the model parameters Θ, and the choice of the likelihood
p(E|Θ) and prior p(Θ) distributions. The models are named after the probability distributions used as the likelihood
distribution.

3.1 Gaussian model

The simplest Bayesian model considers the EPT scores as a random variable obtained by the measurement of the real
latent quality score qj . In this model, the errors are introduced solely by the reviewer who evaluates the translation. We
have taken into account two kinds of stochastic errors introduced by the reviewer:
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• βr: Offset - a systematic additive error that shifts the distribution of the EPT with respect to the real job quality
qj . Its interpretation is the level of strictness of the reviewer: the higher the estimated βr, the stricter the
reviewer, giving EPT scores that are higher (i.e. the translations supposedly contain more errors) than the real
quality.

• σ2
r : Variance - the variability introduced by the reviewer into the values of EPT observed. For this reason, we

consider σr to be the reviewer’s consistency.

Our model for the posterior distribution of EPT is thus:

p(ej |βr, σr) = N (qj + βr, σ
2
r) (3)

Since the linguists under consideration are all experts, we give the bias βr a zero-centred Normal prior, which is
additionally weakly informative (σβ = 10). For σr, we set as the prior a half-Normal distribution with σσ = 1. The
scalar qj is modelled by a Gamma distribution Γ(k, θ) with k = 1 and θ = 3, since we wanted to have a considerable
tail reflecting potentially high values of the real quality score (i.e. bad translations).

To recapitulate, our Gaussian model is as follows

qj ∼ Γ (1, 3)

βr ∼ N
(
0, 102

)
σr ∼ N (0, 1)

ej ∼ N
(
µj = qj + βr, σ

2
r

) (4)

where N (0, 1) is the truncated standard Normal. This model is illustrated in Figure 3 in plate-diagram notation. Notice
that we have an independent prior for each reviewer and each job, so our model contains Nj parameters qj and Nr
parameters for both of βr and σr, where Nj and Nr are the numbers of jobs and reviewers, respectively. Furthermore,
since we have just one review per translation job, we only have one unique random variable ejr for the pair (j, r) of
job-reviewer, that we can call just ej - this corresponds to the two rectangles in Figure 3 not intersecting.

This model allows ej < 0, which is inconsistent with the definition of EPT (Eq. 1). We address this shortcoming in
subsection 3.2.

Figure 3: Gaussian model Bayesian network. In this plate diagram the circles denote random variables, the squares
deterministic variables, and a grey background indicates an observed random variable. Arrows indicate the influence
direction between the variables. The rectangles that enclose the variables indicate their multiplicity: Nj is the total
number of jobs and Nr is the total number of reviewers.

The model described here is similar to the model used in Mathur et al. (2018), which estimates the reliability of
crowdsourcing workers, asking them to assess the quality of translated sentences against some quality-controlled
sentences. As a consequence, Mathur et al. (2018) focuses on modelling quality estimates, which is something we’re
not focusing on in this work.
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3.2 Hurdle model

The model described above has three main modelling shortcomings: (i) it permits negative EPT values (positive by
definition - see Eq.1); (ii) it does not take into account the excess of zeros as described in 2.1; (iii) it uses a symmetric
likelihood (Gaussian) for the EPT values, while the data shows an asymmetric distribution with a significant tail (see
Figure 1b).

To address these, we introduce a more realistic model, where we replaced the Gaussian distribution with a hurdle
probability distribution (Cragg, 1971). The class of hurdle distributions has two separate parts, one modelling the excess
of zeros, while the other one is the distribution of non-zeros. They are similar to the Zero-inflated distributions (Hilbe,
2014), with the difference that the latter considers two sources of zeros, the first coming from the same distribution of
non-zeros (which therefore must be defined for zero values too) and the second from another source that creates the
"inflation" of zeros. Hurdle distributions take their name from the discontinuity which the variable has to "overcome" in
order to attain a non-zero value. Such a zero and non-zero mixture distribution is governed by a Bernoulli distribution
with a success parameter π.

Figure 4: Gaussian fit of the standardised log EPT values. Skewness=-0.01, Kurtosis=-0.03.

In modelling the glut of zeros described in 2.1, we have considered the perfect translations (our zeros) as the result
of a separate phenomenon that does not emerge from the regular TQA process and so, we assumed that a particular
scenario must occur for the translation job to be judged as perfect. More specifically, we considered that zeros can be
produced by situations in which, for example, the reviewer skips a segment out of distraction, or the translator is so
skilled that they are likely to produce a perfect translation. Thus, we considered the possibility that the zeros belong to
a different probability distribution than the one for the jobs with EPT > 0: the model decides how likely it is for a
specific combination of job-translator-reviewer to produce a zero or a positive value, and in the last case the EPT value
is modelled by a Lognormal distribution.

In addition to the reviewer latent variables βr, σr considered in the Gaussian model, we also introduce the translator
error propensity εt, which represents the contribution of the translator to the final EPT score, and a difficulty parameter dl
specific to the language direction l (e.g. English to German). Here, the mechanistic model underlying our interpretation
of contributions is

ej = dlεtβr (5)

In this model, therefore, the real translation job’s quality, which we called qj for the Gaussian model (see 3.1)
corresponds to two multiplicative contributions of language direction and translator’s skill: qj = dlεt. We model each
of dl, εt, βr as a hurdle Lognormal. This is suggested by two factors: (1) the shape of the observed EPT distribution
for non-zero values, which can be reasonably fit by a Lognormal distribution as seen in Figure 4 where we compare
a standard normal distribution with the standardised values of log(EPT ), (2) the error introduced by the reviewer is
better modelled as multiplicative, and not additive as stated for the Gaussian model. Therefore, if we use θ in place of
any of the three random variables dl, εt, βr,

p(θ) = HL(π, µ, σ2) =

{
π θ = 0

(1− π)L(µ, σ2) θ > 0
(6)

where L is the Lognormal distribution.

Throughout this article, random variables are indexed by j, l, r, t (these stand for job, language, reviewer, and translator,
respectively) and have the corresponding dimensionalities. We emphasise that our model needs only a single
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observation for each triplet (j, r, t) to condition random variables attached to various t, r. Moreover, we train
one model for every language direction l separately.

Using the facts that (i) products of independent Bernoulli random variables are Bernoulli, (ii) products of independent
log-normal random variables are log-normal and (iii) there is no reason to think at the parameters as mutually dependent,
we can collapse the model and write 

p(ej) = HL(πj , µj , σ
2
j )

πj = 1− (1− πl)(1− πt)(1− πr)
µj = µl + µt + µr
σ2
j = σ2

l + σ2
t + σ2

r

(7)

where µl is identical for jobs from the same language.

We now give suitable priors to all l, t, r-related variables. To avoid too heavy tails, we give σl, σt, σr informative priors:
a truncated normal distribution N̄ (0.5, 0.25). We give π beta-distributed priors to constrain π on the interval [0, 1]. We
choose B(2, 5) for πl and πt and B(1.5, 5) for πr, to give the latter a lower mode, expecting that a perfect translation
should be primarily due to the job difficulty (in the language direction l) or the translator’s skill, rather than due to the
reviewer’s negligence. In the case that the total absence of errors in the evaluation process is mostly attributable to the
reviewer, the most likely cause would be that they did not actually work on the quality assessment.

We end up with the following probability model:

πl ∼ B (1.5, 5)

πt ∼ B (1.5, 5)

πr ∼ B (2, 5)

µv∈{l,t,r} ∼ N (0, 1)

σv∈{l,t,r} ∼ N (0.5, 0.25)

πj = 1− (1− πl)(1− πt)(1− πr)
µj = µl + µt + µr

σ2
j = σ2

l + σ2
t + σ2

r

ej ∼ HL
(
πj , µj , σ

2
j

) (8)

as illustrated in a plate diagram in Figure 5.

We conclude the illustration of the Hurdle model by giving our interpretations of the parameters in view of the next
section:

• πv∈{l,t,r} - probability contributions to the final πj , the probability of observing a perfect translation. πl here
is the overall difficulty of translation in the language pair l, while πt and πr are the analogous probabilities for
the individual translator and reviewer, respectively. The higher the π, the more likely the outcome of the TQA
process will be a perfect translation (EPT = 0).

• µv∈{l,t,r} - contributions to the mean µj of the underlying normal distribution of log(ej). The higher µt, the
worse the skill of the translator it represents; the higher the µr, the stricter the reviewer (if µr = 0 the reviewer
is unbiased); the higher the µl, the more difficult it is to produce a high-quality translation in the language pair
l.

• σv∈{l,t,r} - contributions to the standard deviation σj of the underlying normal distribution of log(ej). The
higher the σt, the more inconsistent in their effect on the quality of the translations the translator t is. The
higher the σr, the noisier the in their effect on the EPT the reviewer is, regardless of the translator’s skill who
produces the translation and the difficulty of the job (we will refer to the reviewers with high variance as
"inconsistent").
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Figure 5: Hurdle model Bayesian network: circles enclose random variables and squares the deterministic ones. The
arrows indicate the direction of the influence between variables and the grey-filled circle indicates the observed variable.
Here Nj stands for the total number of jobs, Nt for the total number of translators, and Nr for the total number of
reviewers. The rectangles enclose the variables with the same multiplicity. The reader can imagine the entire figure as
contained in a plate indexed by l since the models are independent for each language.

4 Validation

Our final goal is to use the inferred parameters of the models to extract reliable insights into the features affecting the
TQA process: the job’s difficulty, the translator’s skill, and the reviewer’s behaviour. Before interpreting the inferred
parameters and characterising translators and reviewers, we must check the reliability of the inference process in order
to understand whether our modelling can reasonably reproduce realistic situations. We cannot directly measure how
close our inferred parameters are to the true values of the quantities they represent, since there is no actual external
(to the model) evidence of that. This measurable evidence that we’re lacking is called ground truth in the Machine
Learning domain, and the modelling setting in which the ground truth is missing is called unsupervised since it is not
possible to calibrate the model by comparing predictions to observed outcomes.

In order to address the challenge posed by the lack of ground truth, we built a framework in which we can indirectly
compare our results with an available external source of information. The reason behind the term indirectly lies in the
idea that we can use the values of the latent parameters (for which we have no direct evidence)inferred by the models to
generate data for which we have a ground truth to compare it with. For example, we are not aware whether a reviewer
actually has a strict and consistent behaviour, but, if our model can synthesise new EPT data by sampling from the
inferred posterior that reasonably approximate the reviewer’s observed behaviour, then we can be confident that we are
correctly modelling the data with the right parameters. The better the model outcomes approximate the truth, the more
meaningful the inferred parameters, and so the better will be the performance of the model when using it to characterise
properties of the linguists and texts.

Influenced by this idea, we validate our results with two experiments:

1. Posterior predictive check - once we have trained the model and inferred the posterior for all the parameters,
we measure how well the models reproduce the raw EPT data observed in the training phase by drawing
samples from the inferred posterior probability distributions.

2. Skills retrieval - we take advantage of external information about translators’ skills: we are given information
on which translators are certified as skilled, so we can check the ability of the model to assign a higher level of
skill to the translators who have certified expertise;

8



4.1 Posterior predictive check

Based on the observation that "the observed data should look plausible under the posterior predictive distribution"
(Gelman et al., 1995), we draw new EPT samples Erep from the posterior predictive distribution

p(Erep|E) =

∫
p(Erep|Θ) p(Θ|E) dΘ (9)

where p(Erep|Θ) is the model likelihood, while p(Θ|E) is the posterior. The integral is not usually calculated
analytically, but instead approximated through a Monte Carlo estimate based on samples from the posterior.

In order to compare simulated against observed data, we have taken the following features of the distribution as a
benchmark:

• number of zeros - as we pointed out in 2.1, a distinctive feature of our dataset is the one we called the "glut of
zeros". Since we are interested in the interpretation of the source of this phenomenon, we want to be sure that
the model is able to reproduce such inflation of jobs with EPT = 0;

• Kullback-Leibler divergence (KL) - we compare the overall shape of the generated distribution with the shape
of the observed EPT through KL.

4.1.1 Results

First, we split the dataset by language and run the inference, obtaining per-language posteriors of the parameters for
both the Gaussian and Hurdle models. Then, using the same combinations of job-translator-reviewer, we draw new
samples from the posterior predictive distribution defined in Eq. 9, i.e. we generate a simulated EPT value for each job
of the language pair. For each language pair, we produce 1000 replications of the language pair subsets of EPT dataset,
both with the Gaussian model and with the Hurdle one, and we obtained a set of distributions, shown in Figure 6.

Figure 6: Posterior predictive check: examples of replicated distributions for a single language-pair, created with
Gaussian (orange) and Hurdle (green) models compared to the observed distribution (grey). The vertical line is the
median of the distribution, with the respective colour. All the bins in the histogram have the same width which makes it
easier to visualise the differences. EPT values have been rescaled for data protection reasons.

Upon inspection, we notice that, as suspected, the Gaussian model suffers from some modelling weaknesses: its
likelihood distribution (and so its posterior predictive one) is not bounded by zero, so it allows for negative EPT, which
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is wrong by definition (see Eq. 1), and it actually exhibits this behaviour. In spite of this, for some generated data, the
Gaussian model shows a median (the orange vertical line in Figure 6) above that of the observed data.

On the other hand, the Hurdle model seems to replicate the presence of perfect translations, producing a peak at
EPT = 0 quite similar to the one in the observed distribution. Additionally, it accounts for the presence of extremely
large values of EPT in the observed data, while the Gaussian model generates essentially no observations above 0.7
relative EPT.

We have avoided a quantitative assessment of the ratio of zeros generated in the case of the Gaussian model, since
visually examining the posterior distributions alone confirms there is no sharp peak at EPT = 0. This is, of course,
expected given the structure of the model (see 3.1): it is free to produce continuous values of EPT without any
constraints, and so it does not provide inflation of zeros.

In the case of the Hurdle model, however, we were interested in how well it can fit the data by adjusting the parameter π,
which is the probability that an EPT observation is exactly zero. As our metric of agreement between the generated and
the observed data in this aspect we took the absolute difference between the proportion of zeros generated by the Hurdle
model (N (rep)

z ) and the proportion of zeros present in the corresponding real data (N (real)
z ). Finally, we averaged the

metric over the 1000 replications mentioned above, giving us the mean absolute error:

MAE(Zratio) =
1

1000

1000∑
rep=1

|Z(rep)
ratio − Z

(real)
ratio | (10)

where Zratio = Nz

Nj
. In Figure 7 we plot MAE(Zratio), language by language, and, for the sake of visualisation,

we sort languages from the best-MAE language (language_0, MAE(Zratio) < 0.1%), to the worst-MAE language,
language_56, for which the model scored an absolute error in percentage of zeros of about 2.7%.

Figure 7: MAE of the Zratio, representing the deviation from the ratio of zeros in the real EPT distribution. The shaded
area is the standard deviation of the absolute errors, and the languages on the x-axis are sorted by MAE, ranging from a
difference of less than 0.1% of zeros on the left to about 2.7% on the right. Languages have been anonymised for data
protection reasons.

We now compare the generated and observed data on the Kullback-Leibler divergence between their empirical
distributions, calculated as

KL(p, q) = −
∑
x

p(x) log

(
p(x)

q(x)

)
,

where we plug in the observed sample for p(x) and the generated one for q(x). It represents the average extra
information (in nats) needed to encode q assuming that the data is actually distributed as p.
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The Hurdle model exhibits lower KL than the Gaussian model, as can be observed in Figure 8, which shows the average
(over the 1000 replications) ratio between the two divergences:

KLH
KLG

=
KL(R,H)

KL(R,G)

with R, H , and G being the empirical probability distributions (over the EPT values) of the real data, and the samples
generated by the Hurdle and Gaussian models, respectively. For most languages, the ratio between KLH and KLG is
lower than 1 (for which we have a tie - the horizontal line in the plot), indicating that the Hurdle model generates from a
distribution that matches the observed data distribution more closely than the Gaussian model4.To present a clearer
visual indication of the relative deviations of the proportions of the two distances from equality (i.e., 1), we present the
plot in log y-scale.

To summarise, we use the posterior predictive check to find any discrepancies in the generated data with respect to
the real data and conclude that the Hurdle model reproduces the observed distribution well, matching it both in the
inflation of zeros and in the shape of the rest of the distribution. On the other hand, the Gaussian model suffers from
some issues, like a non-zero probability for negative EPT, as was apparent at the time of its conception. Nevertheless,
the Gaussian model fits the data reasonably well, since we can observe that the discrepancies between its results and the
ones produced by the Hurdle model are not that strong, even overperforming it for some languages - i.e. the ones with
the KL ratio above 1 (see Figure 8).

Figure 8: The ratio KLH

KLG
of the Kullback-Leibler divergences between the observed distribution of EPT and the ones

reproduced by the models: for most of the languages, the divergence of the Gaussian model (KLG) is greater than that
of the Hurdle model (KLH ), suggesting that for those languages, the Hurdle model fits the distribution better than the
Gaussian one. The y-axis is log-scale and the horizontal line represents a "tie" between the two models.

4.2 Skills retrieval

The team of translators used by Translated is composed of expert translators, all native speakers of the target language,
and specialised in marketing texts, the topic selected for the extraction of our dataset. Language teams leads are selected
based on their experience by Translated’s project management staff. We will denote such individuals as of skill level
1 (L1). Each is designated a deputy, of skill level 2 (L2). In our study, this selection process provides independent
information about translators’ skills. It can, therefore, be used to validate our models.

4In Figure 8 some languages are missing for computational reasons. Sometimes it was hard to find the right binning to build a
proper normalised probability distribution over the replicated EPT values provided by the models.
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group rev only tra only both

skilled (L1) 38% 0 62%
skilled bkp (L2) 13% 0 87%

unknown skill 24% 12% 64%
Table 1: Dataset details for the percentage of linguists per role (translator/reviewer) and skill level

Since most of the translators involved in the experiment act as both translator and reviewer (cf. Table 1), we can check
how the above translating skill assignments reflect on the linguist characteristics when acting in the role of reviewer.
In this validation, we use only the Hurdle model which takes into account the contribution of both reviewers and
translators, while the Gaussian model does not.

We split the entire population of translators and reviewers into:

• Level 1: they are the most reliable translators as evaluated by Translated, and the most trusted reviewers. In
the following figures, they will be shown in green on the plots.

• Level 2: hey are supposed to be more skilled than the average translator on a team, but sometimes they are less
certified than the L1. As they act as deputies, we also refer to them as "skilled bkp" (backups). They will be
represented in orange.

• Unknown skill: the rest of the population of translators and reviewers. They will be represented in grey.

– translator only: the translators that are in the "unknown skill" category and are not used as reviewers.
Represented in light blue.

– reviewer only: the reviewers that are in the "unknown skill" category and are not used as translators.
Represented in pink.

In the dataset, these linguists can be present in both roles - translator or reviewer - or in just one of them. The breakdown
of roles and skill levels is presented in Table 1. On the plots, the "Unknown skill" category alone is broken down further,
with pink representing the reviewer-only category and light blue the translator-only category; both the skilled translators
- L1 - and the skilled bkp - L2 -will be represented with green and orange respectively, regardless of the role they usually
assume.

As a reminder, the Hurdle model assumes that the final EPT score is composed of three multiplicative contributions:

• dl - the job difficulty in the language direction l, distributed as dl ∼ HL(πlµl, σl)

• εt - the translator error propensity, distributed as εt ∼ HL(πt, µt, σt)

• βr - the reviewer bias, distributed as βr ∼ HL(πr, µr, σr)

where the distribution HL(π, µ, σ) has been defined in Eq. 6. Given that the final EPT is a product of three random
variables dl, εt, βr, it is clear that both translators and reviewers can apply a contraction (or dilation) to the underlying
job difficulty. Such an effect is determined by the parameters of the distribution εt for the translators and βr for the
reviewers. We will thus use the two triplets of parameters - {π, µ, σ} for εt and βr - to characterise the properties of the
linguists in the two roles.

4.2.1 Results

We present the results of the analysis with two kinds of plots, both showing the parameters for the 4 groups described
above. In Figures 9 and 11, we show the 95% CI5of the parameters for the translator and reviewer groups respectively,
while Figures 10 and 12 show scatter plots comparing pairs of parameters, which enables us to characterise both
translators and reviewers, respectively. For comparison, we also present the CI of the raw EPT data that has been
averaged first over the translators and then over the sample of such averages. The results are first examined separately
for the translator and reviewer roles, and, finally, the characteristics of those acting in both roles are presented.

5All the CI have been calculated with the bootstrap technique.
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(a) Translators: the averages of the mean EPT ob-
served per translator. The higher the < EPT >, the
lower we can assume the translator’s skill to be.

(b) Translators: the averages of the mean πT per
translator. This is the probability that the translator
produces a perfect translation.

(c) Translators: the averages of the mean µT . This
is a parameter of the Lognormal distribution of εT
- the error propensity of the translator. The higher
the µT , the lower we interpret the translator’s skill to
be. The dashed vertical line at µT = 0 represents the
case when the final quality score is unaffected by the
translator.

(d) Translators: the averages of the mean σT parame-
ter of the Lognormal distribution of εT per translator
- the error propensity of translators. The lower the
σT , the more consistent we assume the translator to
be in his propensity of introducing errors.

Figure 9: Translator assessment: 95% confidence intervals for every parameter of the Hurdle model associated with the
translators. The population of translators has been split into the language leads (green), their backups (orange), and the
rest: grey for the ones who act both as translators and reviewers at Translated, and light blue for the ones who don’t
appear in the dataset as reviewers.

Translators In our Hurdle model (used here for the inference of the skill characteristics), the contribution made by
the translator to the final quality EPT score of a translation job is represented by the parameter we call the translator
error propensity εt:

εt ∼ HL(πt, µt, σt) (11)

With this, we can give the following interpretation to the parameters that rule such distribution of ε:

• πt: the translator’s contribution to the probability that a translated job will be a perfect translation (EPT > 0).
The higher the πt, the more skilled the translator.

• µt: the mean of the Gaussian distribution of log(εt). The lower the µt, the higher we assume the translator’s
skill to be, reducing the probability of obtaining a high EPT value in the TQA process.

• σt: the standard deviation of the Gaussian distribution described above. The lower the σt, the more consistent
the translator is in his error propensity.

A good translator should, therefore, have lower values of µt and σt and higher values of πt when compared to the
average translator.

In Figure 9, we grouped the translators according to the populations described above and calculated the mean value of
the parameters of interest, together with its 95% CI as found by bootstrapping the sub-population of translators.
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(a) Translators: the higher πT , the higher the probability of
producing perfect translations. The lower µT , the lower the
probability of making errors even when the translation is not
perfect.

(b) Translators: the lower σT , the more consistent the effect of
the translator. The lower the µT the higher the probability of
making errors, when the translation is not perfect.

Figure 10: Translator assessment: every triangle corresponds to a translator with the colour indicating their certified
skill level: green for L1 and orange for L2, while the not-skilled are split between those that act as both reviewers
and translators (grey) and those that are translators only (light blue). The squares are the centroids of the respective
populations. The parameters inferred by the Hurdle model reasonably reflect external information about translators’
skills. The model can reasonably retrieve translators’ skills, assessing the L1 as the translators who produce fewer
errors and more perfect translations - lower right side of (a) - and are also the most consistent - lower left side of (b).

The parameter µt (9c) confirms the intuition that the most skilled translators - L1 (green) - should have the lowest
values: it is more likely that the final translation will have a higher quality (low value of EPT) when translated by them
(even excluding the separate process that governs the 0 EPT translations). Using µt as the separating criterion, we can
distinguish between groups corresponding to L1 (green) and L2 (orange) translators, and considerably more so between
L1 and the unknown skill groups (grey and light blue colours). This separation corresponds to the group averages
of the raw EPT (c.f. Figure 9a), despite those incorporating the joint contributions of job, translator, and reviewer
characteristics.

Examining the values of πt inferred (Figure 10a) we observe that the L1 are well separated from the ones with unknown
skill. This, however, does not hold for L2, which leads us to suspect that some of the backups to the Level 1 translators
might not have the same level of expertise.

Figure 10a shows the location of any individual translator (triangles coloured by their certified skill assignment) in
the plane (πt, µt). We display πt in log scale for the sake of easier visualisation. The larger squares are the mean
values for the respective population (i.e., their centroids) and the dashed horizontal line separates the translators with
µt < 0 (good) from the ones with positive µt (bad). While the orange triangles (L2) are uniformly interspersed within
the bounds delimited by the unknown skill translators (grey triangles), the L1 occupy mostly the lower right area of
the plane, exhibiting a high probability of producing perfect (horizontal direction) or low-error (vertical direction)
translations. If we look at the population centroids (squares), we can indeed observe that the L1 group (green square) is
located towards the lower-right corner of the plane, meaning that, on average, the model assigns higher values of πt
and lower values of µt to the L1 group. The unknown skill groups (light blue and grey triangles) instead exhibit the
opposite behaviour: most of them have higher µt and lower πt values.

Finally, the confidence intervals on the σt estimates do not allow us to state (with a 95% confidence level) that there
exists an observable difference between the populations, except in the case of the subgroup within the unknown skill
grouping which corresponds to those translators that also assumed the role of reviewer (grey triangles). This looks
more consistent (lower σt) in its effect than the subgroup comprised of individuals who were translators only (light
blue triangles). The relationship between the inferred σt and µt values is displayed in Figure 10b: while there exists a
separation between population centroids (squares) in the vertical direction, this does not hold in the horizontal direction,
where the separation is minimal, excepting the translator-only subgroup (light blue).
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5 Reviewer assessment

Similarly to the case for translators, in the Hurdle model the effect of the reviewers is also modelled by introducing a
multiplicative error into the real translation quality through a parameter that we call reviewer bias βr:

βr ∼ HL(πr, µr, σr) (12)

In the case of reviewers, the interpretation of the parameters that govern the distribution of βr is the following:

• πr: the reviewer’s contribution to the probability that a translated text will be a perfect translation (EPT = 0).
Here, high values of πr also have a special interpretation: they correspond to the tendency of the reviewer to
not pay too much attention to the review of a particular segment or to have a bias towards low severity error
annotations6. In other words, they are prone to producing perfect translations, regardless of the skill of the
translator involved or of the job’s intrinsic difficulty.

• µr: the mean of the Gaussian distribution of log(βr): when the reviewer finds some errors, a low value of µr
means that they are generally lenient, reducing the probability of the translation scoring a high EPT value in
the TQA process.

• σr: the standard deviation of the Gaussian distribution of µr. The lower the σr, the more consistent in their
effect will the reviewer be.

As in the case with translators, we also show both the 95% CI of the means of the parameter estimates (Figure 11) and
the location of any individual reviewer in the planes (πr, µr) and (σr, µr) (Figure 12).

While the external certification of the skills of the L1 group seems to be reflected in the model estimates of their
translation skills, this doesn’t translate to the case when they serve as reviewers. We cannot find a clear separation
between the certified experts (L1 and L2) and the rest, at least so far as our interpretation of the parameters would
suggest. This can be seen also in the average mean EPT shown in Figure 11a: the skilled linguists (the certification
pertains to their translation skills and not necessarily their skill as reviewers) do not exhibit a significant difference in
terms of average µr (Figure 11c) when compared to those of unknown skill.

The mean of parameter πr (Figure 11b) seems to be higher for the group of reviewers of unknown skill that don’t act
as translators in our dataset (coloured in pink). This population is composed mainly of linguists who are labelled by
Translated as "preferentially reviewer"; the automatic system in charge of assigning different roles to linguists working
on a translation job will subsequently prefer such linguists when selecting a reviewer for the job. An aspect to keep in
mind is that this label is assigned considering joint feedback of Translated employees and the L1 linguists, therefore
such assignments could be prone to human bias: Translated employees could be influenced by the number of times
they’ve observed the reviewer evaluating a translation as perfect and could, therefore, be influenced by this in assigning
the label "preferentially reviewer" to such "friendly reviewers". Such selection bias is naturally reflected in higher values
of πr for this subgroup. This could also be the reason why the reviewers-only (pink) group in Figure 11b is separated
from the other reviewers of unknown skill that also act in the role of translators (grey triangles). This uncertainty in the
groups’ separation in terms of πr is also fairly evident in Figure 12a where their means are not clearly differentiated,
except for unknown skill only-reviewers (pink) along the horizontal πr axis.

Nonetheless, the L1 and L2 reviewers (coloured green and orange) lie mostly on the left side of the plane (σr, µr)
(Figure 12b), meaning that they are more consistent (i.e. have lower variance) than the uncertified linguists when
reviewing. Although we do not expect to observe a significant separation in terms of πr and µr between the populations
of reviewers examined (we have no reason to suspect a priori that a good translator is a strict or lenient reviewer), we
think their values of σr should reflect somehow the expertise of a linguist (even if his expertise is certified just for the
role of translator): our guess is that a linguist will stabilise their style as his expertise increases, and will be less prone
to inconsistency in reviewing the translations produced by others.

We noticed that the reviewer-only category and that of unknown skill show a higher average σr value compared to the
average of the combined group of skilled and skilled bkp (as can be seen from the group means represented by the
squares in Figure 12b). We thus compared simultaneously the CI intervals shown in Figure 11d, and the scatter plot in
Figure 12b, this time aggregating into two main groups: skilled (L1 - green - and L2 - orange - together) vs. those of
unknown skill (grey and pink triangles). The result shown in Figure 13 confirms our initial intuition by inferring that
the population of skilled reviewers is more consistent at a statistically significant level (lower σr) - with a 95% CI of
CIsk = [0.34, 0.40] - than that of unknown skill, for which the CI is CIsk = [0.41, 0.45].

6We remind the reader that the severities Preferential and Repetition have zero weights in the weighted sum resulting in the final
EPT score.
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(a) Reviewers: The average of the mean EPT ob-
served for the translations, per reviewer who gener-
ated the score.

(b) Reviewers: the averages of the means of the πR

parameter per reviewer. This is a parameter of βR,
the reviewer’s bias. πR contributes to the probability
that the TQA process will produce a zero - a perfect
translation.

(c) Reviewers: the averages of the means of the µR

parameter per reviewer. This is a parameter of the
Lognormal distribution of βR, The higher the µR, the
higher the probability that the reviewer will annotate
errors.

(d) Reviewers: the averages of the means of the σR

parameter of the Lognormal distribution of βR. The
higher value, the lower the reviewer’s consistency in
their effect.

Figure 11: Reviewers assessment: 95% confidence intervals for the means of every parameter of the Hurdle model
belonging to reviewers. The population of reviewers has been split, separating the language leads (green), their backups
(orange), and the others (grey for the ones that serve both as reviewers and translators at Translated, and light blue for
the ones who appear in the dataset as reviewers only.)
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(a) Reviewers: The higher the πR, the more frequently the
reviewer will evaluate a translation as perfect. The higher the
µR, the higher the chance that if the reviewer decides to annotate
errors, they will find many. The pink population of those of
unknown skill appears to be the least consistent in their effect,
while the L2 population appears to be the strictest.

(b) Reviewers: In the upper-left area of the plane lie the review-
ers with a higher probability of annotating more errors (due to
high µR) while having a consistent behaviour (related to low
σR). The L1 and L2 groups are concentrated on the left side of
the plane, while in the vertical direction the L2 group and the
group of linguists of unknown skill who act as both reviewers
and translators seem to be the highest.

Figure 12: Reviewers assessment: every triangle represents a single reviewer, and the colour indicates their certified
skill level: green for L1 and orange for L2, while those of unknown skill are split between those that serve both as
reviewers and translators (grey), and those that are reviewers only (pink). In the role of reviewers, the difference in the
population centroids of the inferred parameters is not so significant: we can barely distinguish the L2 as stricter than the
L1, for which we do not have a reasonable explanation. Looking at σr, the populations of skilled and skilled bkp seem
to be more consistent in their effect than the others, especially when comparing the L2 to those of unknown skill that
are reviewers only.

(a) 95% CI of the σr parameter for the two aggregated
groups: skilled (L1) and skilled bkp (L2) in green and
those of unknown skill and unknown skill reviewer-
only in grey. If we aggregate the populations, the
difference in consistency becomes significant, indi-
cating the skilled reviewers as the most consistent.

(b) Same plot as in Figure 12b, but with L1 and L2
grouped together, as well as unknown skill and un-
known skill reviewer-only. It is particularly evident
that most of the skilled linguists (green triangles) lie
on the left side of the plane (i.e., they are the most
consistent).

Figure 13: Reviewers assessment - skills retrieval: aggregating the skilled groups (L1 and L2) and those of unknown
skill (reviewer-only and acting in both roles), the separation between the two groups becomes evident.

17



Cross-features Finally, we examine the pairs of parameters (µr, µt) for the subgroup of linguists who act as both
translators and reviewers in our dataset, aggregating L1 and L2 into one group and those of unknown skill into another
(green, orange, and grey triangles in Figure 14, respectively). We notice that the L1 group members cluster on the
lower-left side of the (σr, σt) plane (Figure 14b), showing a higher consistency both as reviewers and as translators
when compared with those of unknown skill. Moreover, looking at the Figure 14a, we can clearly see that while the
populations of linguists are separated well as translators (in the vertical direction), we cannot say the same for their
separation as reviewers (the horizontal direction), meaning that the skill certification is reflected in the behaviour as
a translator, but not necessarily so when serving as a reviewer. Therefore, we can claim that assuming that "good
translator" implies "good reviewer" is a dangerous assumption to make. Moreover, examining the same plot (Fig. 14a),
we notice that the lower-left part of the plane (µr, µt) is quite empty when compared to the other quadrants, which
would imply that if a linguist is very good at translating (located in the lower part of the plane) they are also likely to be
a strict reviewer (located on the right), and we can reasonably say that we can reasonably say this relationship holds in
both directions.

(a) Linguists serving both as reviewers (horizontal direction)
and translators (vertical direction) - average effect: examining
both the coordinates of the group means (squares) and the areas
covered by the KDE of their distributions, we can see that while
the different groups show a significant separation in terms of
µt (vertically), they are less clearly separated in their µr values
(horizontally).

(b) Linguists serving both as reviewers (horizontal direction)
and translators (vertical direction) - effect consistency: the L1
and L2 groups cluster in the lower-left area of the plane, as
shown by the mean coordinates of the groups, represented by
the squares. Those of unknown skill are dispersed more widely
in the plane.

Figure 14: Linguists assessment - cross-evaluation as reviewers and translators: every triangle is a linguist. The colour
indicates their certified skill and the squares are the mean coordinates of the linguists’ groupings. The coloured area is
the two-dimensional KDE of the population. The horizontal direction gives insights into the linguist’s quality-assessment
(i.e., review) behaviour, while the vertical one is dedicated to their translating skills.

Given that the groups are not strongly separated on either of the plots in Figure 14, we can find a considerable portion
of linguists, who, despite not being certified by Translated as skilled, actually exhibit the behaviour of a skilled linguist
as indicated by the values of their model parameters. It would, therefore, be of interest to check their performance case
by case and to, if the findings hold up, use the model as a quantitative metric in choosing whom to certify as a skilled
linguist. The model could also help in adjusting the number of translations that Translated assigns to such linguists.
When used for this purpose, the model could help improve the overall quality of delivered translations by maximising
the number of translations provided by high-quality translators.
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6 Conclusions and future work

Translation Quality Assessment is the evaluation of the overall quality of a translation and can be influenced by many
factors: the source texts do not all share the same difficulty and, even for the same text, the difficulty can vary with
the choice of the target language into which the text is translated. The final translation quality will reflect the skill of
the translator who produced it, and its assessment will be further affected by the characteristics of the reviewer, who
can be strict or lenient. Both the translator and the reviewer can also have a higher or a lower level of consistency: the
translator in the number of errors they produce, and the reviewer in their own judgements.

Our work aims to face the lack of reliability of the TQA process when conducted by humans due to human subjectivity
affecting both the evaluation and the translation itself. We have taken into account three main features contributing to the
assessment of a translation’s quality, namely the job’s difficulty, the translator’s skills, and the reviewer’s characteristics.
We treated the observed data about the quality as one measurement of a real latent quality score so as to consider
the contribution of a translation job’s intrinsic difficulty as well as that of one of the two human linguists involved in
the evaluation process as errors affecting such measurements. In order to obtain insights into the TQA process, we
parameterised the above errors introduced into the quality assessment by creating two probabilistic models, differing
in their choice of the parameters and in their likelihood functions that links such parameters to real data. While the
simplest Gaussian model (similar to the one used by Mathur et al. (2018)) does not consider the effect of the glut of
perfect (EPT=0) translations apparent from the data observed, the more complex Hurdle model does. Furthermore, the
Hurdle model considers the errors in the measurements of the quality-score as multiplicative, while the Gaussian model
treats such errors as additive. The better fit to empirical data of the Hurdle model suggests that the multiplicative relation
is a better choice for modelling the systematic error in the TQA evaluations. Our models are shown to be consistent with
existing external knowledge about translator skill, and additionally, provide useful insights into the behaviour of the
reviewers who work on the TQA process. In particular, the results obtained from the Hurdle model indicate that skilled
translators are usually stricter when evaluating a translation job as reviewers, implying that the increasing expertise in
translation could induce a bias when assessing translations produced by others, even if such expertise ensures a certain
level of assessment consistency. For this reason, we claim that it is not safe to rely on a reviewer’s performance to be
guaranteed by their translation expertise. It is necessary, instead, to evaluate their characteristics in the role of a quality
assessor alone, as we did by modelling reviewers’ bias and consistency. Finally, our Bayesian approach is shown to
perform well despite often having just one review per translation job in the data to work with: it can, nevertheless,
retrieve plausible patterns of the TQA process and assess the characteristics of the translators and reviewers involved.
This contrasts with approaches requiring several reviews per translation, which are more expensive both in terms of
time and money.

The current bottleneck in our method is the single translation job quality measurement we receive from the data: while
the models can see and evaluate the performance of the same reviewers and translators across multiple jobs, they have
only one piece of information about a specific translation job. The remaining uncertainty in translation quality is
still too high to catch the fluctuations between different texts. For future improvements in this estimation, we could
consider collecting more than one review per job (creating new data specifically for the purpose of calibrating models)
or we could use the properties of the text itself in order to build a more informative prior for a translation’s intrinsic
difficulty. As an example of the latter approach, we could measure the "entropy of translation" (Dimitrova, 2005; Hale,
2006; Krings, 2001; Martínez Martínez and Teich, 2017; Zhao et al., 2019), i.e. the degree of unpredictability of the
translation outcome given the source text, in order to have a more suitable prior assessment of a specific translation’s
intrinsic difficulty, which would decrease the uncertainty of the model about its quality assessment outcome.

Finally, our modelling is affected by finite-size effects since we use the EPT metric, a weighted ratio of counts. An
extension of this work would use both error and word count instead of the EPT; we could also model the documents at
the segment level instead of as a whole.
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